Gregory Starr


2021

DOI bib
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Wai-Yin Stephen Chan, Sigrid Dengel, Sébastien Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, Nathaniel A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroyasu Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, Beverly E. Law, Xuhui Lee, M. E. Litvak, Heping Li, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, William L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart-Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, J. D. Wood, Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302

• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.

2019

DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, Patrick Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, Jocelyn Egan, Bo Elberling, Eugénie Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie Jastrow, Aram Kalhori, Yongwon Kim, John S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, J. W. Mcfarland, A. David McGuire, Anders Michelsen, C. Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, William L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, Jeffrey M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
Search
Co-authors
Venues