Henner Hollert


DOI bib
Validation of the micro-EROD assay with H4IIE cells for assessing sediment contamination with dioxin-like chemicals
Jacob D. Ouellet, Carolin Gembé, Sebastian Buchinger, Georg Reifferscheid, Henner Hollert, Markus Brinkmann
Environmental Pollution, Volume 265

In vitro bioassays have been used as a bioanalytical means of detecting dioxin-like compounds (DLCs) in environmental matrices and have been suggested as a tool for quantifying DLCs in sediments. The present study evaluated the relationship between bioanalytical results from the micro-7-ethoxyresorufin-O-deethylase (EROD) bioassay and chemical analytical results in 25 sediment samples collected from rivers across Germany. Sediments were collected, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) were extracted from the sediments, biological toxicity equivalent quotients (BEQs) were determined by micro-EROD assay and toxicity equivalent quotients (TEQs) were calculated from chemical analysis. Correlations between BEQs and TEQs were evaluated, and linear regression modeling was performed, excluding 6 samples as validation data, to derive equations for predicting TEQs from BEQs. Validation data was tested to evaluate predictive capabilities of the models. Correlations were observed between BEQ and TEQ for PCDD/Fs (r=0.987), PCBs (r=0.623), measured sum of PCDD/F and PCBs (r = 0.975) and calculated sum of PCDD/F and PCBs (r = 0.971). The modeling equations provided low variances as evaluated by mean absolute error (MAE) (≤10.3 pg/g) and root mean square error (RMSE) (≤15.8 pg/g) indicating that expected TEQs could be reasonably well calculated from BEQs. Predicted TEQs from validation data fell within the 95% probability intervals of the test data and had low variances (MAE≤6.5 pg/g) and (RMSE≤10.7 pg/g). Our results indicate that the micro-EROD bioassay can be used as a screening tool for DLCs in sediment and has the capability to be used as an alternate method to chemical analysis for quantifying dioxin-like potential of sediments.

DOI bib
New Insights into the Toxicokinetics of 3,4-Dichloroaniline in Early Life Stages of Zebrafish (Danio rerio)
Sabrina Schiwy, Ann-Kathrin Herber, Henner Hollert, Markus Brinkmann
Toxics, Volume 8, Issue 1

In the fish embryo toxicity (FET) test with zebrafish (Danio rerio) embryos, 3,4-dichloroaniline (3,4-DCA) is often employed as a positive control substance. Previous studies have characterized bioconcentration and transformation of 3,4-DCA in this test under flow-through conditions. However, the dynamic changes of chemical concentrations in exposure media and embryos were not studied systematically under the commonly used semi-static exposure conditions in multiwell plates. To overcome these limitations, we conducted semi-static exposures experiments where embryolarval zebrafish were exposed to 0.5, 2.0, and 4.0 mg L−1 of 3,4-DCA for up to 120 hpf, with 24-h renewal intervals. During each renewal interval, concentrations of 3,4-DCA were quantified in water samples at 0, 6, 18, and 24 h using high-performance liquid chromatography with diode array detection. Levels of 3,4-DCA in larvae were measured after 120 h exposure. Concentrations of 3,4-DCA in the test vessels decreased rapidly during exposure. Taking these dynamics into account, bioconcentration factors in the present study ranged from 12.9 to 29.8 L kg−1, depending on exposure concentration. In summary, this study contributed to our knowledge of chemical dynamics in the FET test with embryolarval zebrafish, which will aid in defining suitable exposure conditions for future studies.


DOI bib
In situ microbiota distinguished primary anthropogenic stressor in freshwater sediments
Yuwei Xie, Tilman Floehr, Xiaowei Zhang, Huang Xiao, Jianghua Yang, Pu Xia, G.A. Burton, Henner Hollert
Environmental Pollution, Volume 239

Conventional assessment and evaluation of sediment quality are based on laboratory-based ecotoxicological and chemical measurements with lack of concern for ecological relevance. Microbiotas in sediment are responsive to pollutants and can be used as alternative ecological indicators of sediment pollutants; however, the linkage between the microbial ecology and ecotoxicological endpoints in response to sediment contamination has been poorly evaluated. Here, in situ microbiotas from the Three Gorges Reservoir (TGR) area of the Yangtze River were characterized by DNA metabarcoding approaches, and then, changes of in situ microbiotas were compared with the ecotoxicological endpoint, aryl hydrocarbon receptor (AhR) mediated activity, and level of polycyclic aromatic hydrocarbons (PAHs) in sediments. PAHs and organic pollutant mixtures mediating AhR activity had different effects on the structures of microbiotas. Specifically, Shannon indices of protistan communities were negatively correlated with the levels of AhR mediated activity and PAHs. The sediment AhR activity was positively correlated with the relative abundance of prokaryotic Acetobacteraceae, but had a negative correlation with protistan Oxytrichidae. Furthermore, a quantitative classification model was built to predict the level of AhR activity based on the relative abundances of Acetobacteraceae and Oxytrichidae. These results suggested that in situ Protista communities could provide a useful tool for monitoring and assessing ecological stressors. The observed responses of microbial community provided supplementary evidence to support that the AhR-active pollutants, such as PAHs, were the primary stressors of the aquatic community in TGR area.