Homa Kheyrollah Pour


2024

DOI bib
Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario)
Ali Reza Shahvaran, Homa Kheyrollah Pour, Philippe Van Cappellen
Remote Sensing, Volume 16, Issue 9

Chlorophyll-a concentration (Chl-a) is commonly used as a proxy for phytoplankton abundance in surface waters of large lakes. Mapping spatial and temporal Chl-a distributions derived from multispectral satellite data is therefore increasingly popular for monitoring trends in trophic state of these important ecosystems. We evaluated products of eleven atmospheric correction processors (LEDAPS, LaSRC, Sen2Cor, ACOLITE, ATCOR, C2RCC, DOS 1, FLAASH, iCOR, Polymer, and QUAC) and 27 reflectance indexes (including band-ratio, three-band, and four-band algorithms) recommended for Chl-a concentration retrieval. These were applied to the western basin of Lake Ontario by pairing 236 satellite scenes from Landsat 5, 7, 8, and Sentinel-2 acquired between 2000 and 2022 to 600 near-synchronous and co-located in situ-measured Chl-a concentrations. The in situ data were categorized based on location, seasonality, and Carlson’s Trophic State Index (TSI). Linear regression Chl-a models were calibrated for each processing scheme plus data category. The models were compared using a range of performance metrics. Categorization of data based on trophic state yielded improved outcomes. Furthermore, Sentinel-2 and Landsat 8 data provided the best results, while Landsat 5 and 7 underperformed. A total of 28 Chl-a models were developed across the different data categorization schemes, with RMSEs ranging from 1.1 to 14.1 μg/L. ACOLITE-corrected images paired with the blue-to-green band ratio emerged as the generally best performing scheme. However, model performance was dependent on the data filtration practices and varied between satellites.

DOI bib
Assessing Ice Break-Up Trends in Slave River Delta through Satellite Observations and Random Forest Modeling
Ida Moalemi, Homa Kheyrollah Pour, K. Andrea Scott
Remote Sensing, Volume 16, Issue 12

The seasonal temperature trends and ice phenology in the Great Slave Lake (GSL) are significantly influenced by inflow from the Slave River. The river undergoes a sequence of mechanical break-ups all the way to the GSL, initiating the GSL break-up process. Additionally, upstream water management practices impact the discharge of the Slave River and, consequently, the ice break-up of the GSL. Therefore, monitoring the break-up process at the Slave River Delta (SRD), where the river meets the lake, is crucial for understanding the cascading effects of upstream activities on GSL ice break-up. This research aimed to use Random Forest (RF) models to monitor the ice break-up processes at the SRD using a combination of satellite images with relatively high spatial resolution, including Landsat-5, Landsat-8, Sentinel-2a, and Sentinel-2b. The RF models were trained using selected training pixels to classify ice, open water, and cloud. The onset of break-up was determined by data-driven thresholds on the ice fraction in images with less than 20% cloud coverage. Analysis of break-up timing from 1984 to 2023 revealed a significant earlier trend using the Mann–Kendall test with a p-value of 0.05. Furthermore, break-up data in recent years show a high degree of variability in the break-up rate using images in recent years with better temporal resolution.

2023

DOI bib
Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region
Gifty Attiah, Homa Kheyrollah Pour, K. Andrea Scott, Gifty Attiah, Homa Kheyrollah Pour, K. Andrea Scott
Earth System Science Data, Volume 15, Issue 3

Abstract. Lake surface temperature (LST) is an important attribute that highlights regional weather and climate variability and trends. The spatial resolution and thermal sensors on Landsat platforms provide the capability of monitoring the temporal and spatial distribution of lake surface temperature on small- to medium-sized lakes. In this study, a retrieval algorithm was applied to the thermal bands of Landsat archives to generate a LST dataset (North Slave LST dataset) for 535 lakes in the North Slave Region (NSR) of the Northwest Territories (NWT), Canada, for the period of 1984 to 2021. North Slave LST was retrieved from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS); however, most of the dataset was created from the thermal bands of Landsat 5 (43 %) due to its longevity (1984–2013). Cloud masks were applied to Landsat images to eliminate cloud cover. In addition, a 100 m inward buffer was applied to lakes to prevent pixel mixing with shorelines. To evaluate the algorithm applied, retrieved LST was compared with in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations. A good agreement was observed between in situ observations and North Slave LST, with a mean bias of 0.12 ∘C and a root mean squared deviation (RMSD) of 1.7 ∘C. The North Slave LST dataset contains more available data for warmer months (May to September; 57.3 %) compared to colder months (October to April). The average number of images per year for each lake across the NSR ranged from 20 to 45. The North Slave LST dataset, available at https://doi.org/10.5683/SP3/J4GMC2 (Attiah et al., 2022), will provide communities, scientists, and stakeholders with spatial and temporal changing temperature trends on lakes for the past 38 years.

DOI bib
Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region
Gifty Attiah, Homa Kheyrollah Pour, K. Andrea Scott, Gifty Attiah, Homa Kheyrollah Pour, K. Andrea Scott
Earth System Science Data, Volume 15, Issue 3

Abstract. Lake surface temperature (LST) is an important attribute that highlights regional weather and climate variability and trends. The spatial resolution and thermal sensors on Landsat platforms provide the capability of monitoring the temporal and spatial distribution of lake surface temperature on small- to medium-sized lakes. In this study, a retrieval algorithm was applied to the thermal bands of Landsat archives to generate a LST dataset (North Slave LST dataset) for 535 lakes in the North Slave Region (NSR) of the Northwest Territories (NWT), Canada, for the period of 1984 to 2021. North Slave LST was retrieved from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS); however, most of the dataset was created from the thermal bands of Landsat 5 (43 %) due to its longevity (1984–2013). Cloud masks were applied to Landsat images to eliminate cloud cover. In addition, a 100 m inward buffer was applied to lakes to prevent pixel mixing with shorelines. To evaluate the algorithm applied, retrieved LST was compared with in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations. A good agreement was observed between in situ observations and North Slave LST, with a mean bias of 0.12 ∘C and a root mean squared deviation (RMSD) of 1.7 ∘C. The North Slave LST dataset contains more available data for warmer months (May to September; 57.3 %) compared to colder months (October to April). The average number of images per year for each lake across the NSR ranged from 20 to 45. The North Slave LST dataset, available at https://doi.org/10.5683/SP3/J4GMC2 (Attiah et al., 2022), will provide communities, scientists, and stakeholders with spatial and temporal changing temperature trends on lakes for the past 38 years.

DOI bib
An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes
Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean, Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean
Cold Regions Science and Technology, Volume 210

The seasonal dynamics of freshwater lake ice and its interactions with air and snow are studied in two small subarctic lakes with comparable surface areas but contrasting depths (4.3 versus 91 m). Two, 2.9 m long thermistor chain sensors (Snow and Ice Mass Balance Apparatuses), were used to remotely measure air, snow, ice, and water temperatures every 15-min between December 2021 and March 2022. Results showed that freeze-up occurred later in the deeper lake (Ryan Lake) and earlier in the shallow lake (Landing Lake). Ice growth was significantly faster in Ryan Lake than in Landing Lake, due to cold water temperatures (mean (Tw¯) =0.65 to 0.96°C) persisting beneath the ice. In Landing Lake, basal ice growth was hindered because of warm water temperatures (Tw¯=1.5 to 2.1°C) caused by heat released from lake sediments. Variability in air temperatures at both lakes had significant influences on the thermal regimes of ice and snow, particularly in Ryan Lake, where ice temperatures were more sensitive to rapid changes in air temperatures. This finding suggests that conductive heat transfer through the air-water continuum may be more sensitive to variability in air temperatures in deeper lakes with colder water temperatures than in shallow lakes with warmer water temperatures, if snow depths and densities are comparable. This study highlights the significance of lake morphology and rapid air temperature variability on influencing ice growth processes. Conclusions drawn aim to improve the representation of ice growth processes in regional and global climate models, and to improve ice safety for northern communities.

DOI bib
An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes
Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean, Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean
Cold Regions Science and Technology, Volume 210

The seasonal dynamics of freshwater lake ice and its interactions with air and snow are studied in two small subarctic lakes with comparable surface areas but contrasting depths (4.3 versus 91 m). Two, 2.9 m long thermistor chain sensors (Snow and Ice Mass Balance Apparatuses), were used to remotely measure air, snow, ice, and water temperatures every 15-min between December 2021 and March 2022. Results showed that freeze-up occurred later in the deeper lake (Ryan Lake) and earlier in the shallow lake (Landing Lake). Ice growth was significantly faster in Ryan Lake than in Landing Lake, due to cold water temperatures (mean (Tw¯) =0.65 to 0.96°C) persisting beneath the ice. In Landing Lake, basal ice growth was hindered because of warm water temperatures (Tw¯=1.5 to 2.1°C) caused by heat released from lake sediments. Variability in air temperatures at both lakes had significant influences on the thermal regimes of ice and snow, particularly in Ryan Lake, where ice temperatures were more sensitive to rapid changes in air temperatures. This finding suggests that conductive heat transfer through the air-water continuum may be more sensitive to variability in air temperatures in deeper lakes with colder water temperatures than in shallow lakes with warmer water temperatures, if snow depths and densities are comparable. This study highlights the significance of lake morphology and rapid air temperature variability on influencing ice growth processes. Conclusions drawn aim to improve the representation of ice growth processes in regional and global climate models, and to improve ice safety for northern communities.

DOI bib
Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
Alicia Pouw, Homa Kheyrollah Pour, Alex MacLean, Alicia Pouw, Homa Kheyrollah Pour, Alex MacLean
The Cryosphere, Volume 17, Issue 6

Abstract. Ice thickness across lake ice is mainly influenced by the presence of snow and its distribution, which affects the rate of lake ice growth. The distribution of snow depth over lake ice varies due to wind redistribution and snowpack metamorphism, affecting the variability of lake ice thickness. Accurate and consistent snow depth data on lake ice are sparse and challenging to obtain. However, high spatial resolution lake snow depth observations are necessary for the next generation of thermodynamic lake ice models to improve the understanding of how the varying distribution of snow depth influences lake ice formation and growth. This study was conducted using ground-penetrating radar (GPR) acquisitions with ∼9 cm sampling resolution along transects totalling ∼44 km to map snow depth over four Canadian sub-arctic freshwater lakes. The lake snow depth derived from GPR two-way travel time (TWT) resulted in an average relative error of under 10 % when compared to 2430 in situ snow depth observations for the early and late winter season. The snow depth derived from GPR TWTs for the early winter season was estimated with a root mean square error (RMSE) of 1.6 cm and a mean bias error of 0.01 cm, while the accuracy for the late winter season on a deeper snowpack was estimated with a RMSE of 2.9 cm and a mean bias error of 0.4 cm. The GPR-derived snow depths were interpolated to create 1 m spatial resolution snow depth maps. The findings showed improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information. The results suggest that GPR acquisitions can be used to derive lake snow depth, providing a viable alternative to manual snow depth monitoring methods. The findings can lead to an improved understanding of snow and lake ice interactions, which is essential for northern communities' safety and wellbeing and the scientific modelling community.

DOI bib
Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
Alicia Pouw, Homa Kheyrollah Pour, Alex MacLean, Alicia Pouw, Homa Kheyrollah Pour, Alex MacLean
The Cryosphere, Volume 17, Issue 6

Abstract. Ice thickness across lake ice is mainly influenced by the presence of snow and its distribution, which affects the rate of lake ice growth. The distribution of snow depth over lake ice varies due to wind redistribution and snowpack metamorphism, affecting the variability of lake ice thickness. Accurate and consistent snow depth data on lake ice are sparse and challenging to obtain. However, high spatial resolution lake snow depth observations are necessary for the next generation of thermodynamic lake ice models to improve the understanding of how the varying distribution of snow depth influences lake ice formation and growth. This study was conducted using ground-penetrating radar (GPR) acquisitions with ∼9 cm sampling resolution along transects totalling ∼44 km to map snow depth over four Canadian sub-arctic freshwater lakes. The lake snow depth derived from GPR two-way travel time (TWT) resulted in an average relative error of under 10 % when compared to 2430 in situ snow depth observations for the early and late winter season. The snow depth derived from GPR TWTs for the early winter season was estimated with a root mean square error (RMSE) of 1.6 cm and a mean bias error of 0.01 cm, while the accuracy for the late winter season on a deeper snowpack was estimated with a RMSE of 2.9 cm and a mean bias error of 0.4 cm. The GPR-derived snow depths were interpolated to create 1 m spatial resolution snow depth maps. The findings showed improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information. The results suggest that GPR acquisitions can be used to derive lake snow depth, providing a viable alternative to manual snow depth monitoring methods. The findings can lead to an improved understanding of snow and lake ice interactions, which is essential for northern communities' safety and wellbeing and the scientific modelling community.

DOI bib
Four decades of lake surface temperature in the Northwest Territories, Canada, using a lake-specific satellite-derived dataset
Gifty Attiah, Homa Kheyrollah Pour, K. Andrea Scott
Journal of Hydrology: Regional Studies, Volume 50

This study analyzed lake surface temperature (LST) trends and spatial distribution across 535 predominantly small to medium lakes across the North Slave Region (NSR) of the Northwest Territories (NWT), Canada. The NWT is characterized by a vast number of lakes covering a significant portion of its spatial extent. However, there is limited knowledge of how LST responds to climate warming in this region. To address this, LST was analyzed in four distinct periods: open water season (OW), ice cover season (IC), and the transitional months of May (TM) and October (TO). LSTs from 1984 to 2021 were retrieved from a lake-specific satellite-derived LST dataset (North Slave LST). LST trend distribution and relationships were analyzed using the Mann-Kendall test and a multilinear regression model. The analysis revealed an overall increase in LST, with average rates (max) of 0.03 °C/year (0.05 °C/year), 0.03 °C/year (0.06 °C/year), and 0.13 °C/year (0.27 °C/year) for OW, TM, and TO, respectively accross study lakes. A faster rate of change was observed in October compared to other periods. Results indicated significant increases in LST for 411 lakes (77%) during OW, 418 lakes (78%) during TO, and 490 lakes (92%) during TM. The spatial distribution and magnitude of LST change were primarily influenced by geographical than morphometric properties. The analysis demonstrated later freeze-up (0.20 day/year) and earlier break-up (−0.17 day/year) of lake ice across the NSR.

2022

DOI bib
Mapping snow depth over lake ice in Canada’s sub-arctic using ground-penetrating radar
Alicia Pouw, Homa Kheyrollah Pour, A. A. MacLean

Abstract. Ice thickness across lake ice is influenced mainly by the presence of snow and its distribution, as it directly impacts the rate of lake ice growth. The spatial distribution of snow depth over lake ice varies and is driven by wind redistribution and snowpack metamorphism, creating variability in the lake ice thickness. The accuracy and consistency of snow depth measurement data on lake ice are challenging and sparse to obtain. However, high spatial resolution lake snow depth observations are necessary for the next generation of thermodynamic lake ice models. Such information is required to improve the knowledge and understanding of snow depth distribution over lake ice. This study maps snow depth distribution over lake ice using ground-penetrating radar (GPR) two-way travel-time (TWT) with ~9 cm spatial resolution along transects totalling ~44 km over four freshwater lakes in Canada’s sub-arctic. The accuracy of the snow depth retrieval is assessed using in situ snow depth observations (n =2,430). On average, the snow depth derived from GPR TWTs for the early winter season is estimated with a root mean square error (RMSE) of 1.58 cm and a mean bias error of -0.01 cm. For the late winter season on a deeper snowpack, the accuracy is estimated with RMSE of 2.86 cm and a mean bias error of 0.41 cm. The GPR-derived snow depths are interpolated to create 1 m spatial resolution snow depth maps. Overall, this study improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information, which is essential for the lake ice modelling community.

DOI bib
Rates and timing of chlorophyll-<i>a</i> increases and related environmental variables in global temperate and cold-temperate lakes
Hannah Adams, Jane J. Ye, Bhaleka Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, Philippe Van Cappellen
Earth System Science Data, Volume 14, Issue 11

Abstract. Lakes are key ecosystems within the global biogeosphere. However, the environmental controls on the biological productivity of lakes – including surface temperature, ice phenology, nutrient loads, and mixing regime – are increasingly altered by climate warming and land-use changes. To better characterize global trends in lake productivity, we assembled a dataset on chlorophyll-a concentrations as well as associated water quality parameters and surface solar radiation for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid net increase of in situ chlorophyll-a concentrations from time series data and applied it to data collected between 1964 and 2019 across 343 lakes located north of 40∘. The data show that the spring chlorophyll-a increase periods have been occurring earlier in the year, potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset on chlorophyll-a increase rates and timing can be used to analyze trends and patterns in lake productivity across the northern hemisphere or at smaller, regional scales. We illustrate some trends extracted from the dataset and encourage other researchers to use the open dataset for their own research questions. The PCI dataset and additional data files can be openly accessed at the Federated Research Data Repository at https://doi.org/10.20383/102.0488 (Adams et al., 2021).

2021

DOI bib
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin, Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin
Hydrological Processes, Volume 35, Issue 11

Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.

DOI bib
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin, Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin
Hydrological Processes, Volume 35, Issue 11

Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.

2020

DOI bib
Retrieval of ice/water observations from synthetic aperture radar imagery for use in lake ice data assimilation
K. Andrea Scott, Linlin Xu, Homa Kheyrollah Pour
Journal of Great Lakes Research, Volume 46, Issue 6

High-resolution lake ice/water observations retrieved from satellite imagery through efficient, automated methods can provide critical information to lake ice forecasting systems. Synthetic aperture radar (SAR) data is well-suited to this purpose due to its high spatial resolution (approximately 50 m). With recent increases in the volume of SAR data available, the development of automated retrieval methods for these data is a priority for operational centres. However, automated retrieval of ice/water data from SAR imagery is difficult, due to ambiguity in ice and open water signatures, both in terms of image tone and in terms of parameterized texture features extracted from these images. Convolutional neural networks (CNNs) can learn features from imagery in an automated manner, and have been found effective in previous studies on sea ice concentration estimation from SAR. In this study the use of CNNs to retrieve ice/water observations from dual-polarized SAR imagery of two of the Laurentian Great Lakes, Lake Erie and Lake Ontario, is investigated. For data assimilation, it is crucial that the retrieved observations are of high quality. To this end, quality control measures based on the uncertainty of the CNN output to eliminate incorrect retrievals are discussed and demonstrated. The quality control measures are found to be effective in both dual-polarized and single-polarized retrievals. The ability of the CNN to downscale the coarse resolution training labels is demonstrated qualitatively.