2022
DOI
bib
abs
Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.
Authors presented in alphabetical order,
Eric J. Arts,
R. Stephen Brown,
David Bulir,
Trevor C. Charles,
Christopher T. DeGroot,
Robert Delatolla,
Jean‐Paul Desaulniers,
Elizabeth A. Edwards,
Meghan Fuzzen,
Kimberley Gilbride,
Jodi Gilchrist,
Lawrence Goodridge,
Tyson E. Graber,
Marc Habash,
Peter Jüni,
Andrea E. Kirkwood,
James Knockleby,
Christopher J. Kyle,
Chrystal Landgraff,
Chand S. Mangat,
Douglas G. Manuel,
R. Michael L. McKay,
Edgard M. Mejia,
Aleksandra Mloszewska,
Banu Örmeci,
Claire Oswald,
Sarah Jane Payne,
Hui Peng,
Shelley Peterson,
Art F. Y. Poon,
Mark R. Servos,
Denina Simmons,
Jianxian Sun,
Minqing Ivy Yang,
Gustavo Ybazeta
Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels.
Brominated disinfection by-products (Br-DBPs) can form during chlorination of drinking water in treatment plants (DWTP). Regulations exist for a small subset of Br-DBPs; However, hundreds of unregulated Br-DBPs have been detected and limited information exists on their occurrence, concentrations, and seasonal trends. Here, a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) method was optimized to screen chlorinated waters for Br-DBPs. There were 553 Br-DBPs detected with m/z values ranging from 170.884 to 497.0278 and chromatographic retention times from 2.4 to 26.2 min. With MS 2 information, structures for 40 of the 54 most abundant Br-DBPs were predicted. The method was then applied to a year-long study in which raw, clear well, and finished water were analyzed monthly. The 54 most abundant unregulated Br-DBPs were subjected to trend analysis. Br-DBPs with higher oxygen-to-carbon (O/C) and bromine-to-carbon (Br/C) ratios increased as water moved from the clear well to the finished stage, which indicated the dynamic formation of Br-DBPs. Monthly trends of unregulated Br-DBPs were compared to raw water parameters such as natural organic matter, temperature, and total bromine, but no correlations were observed. It was found that total concentrations of bromine (TBr) in finished water (0.04–0.12 mg/L) were consistently and significantly greater than in raw water (0.013–0.038 mg/L, P < 0.001), suggesting the introduction of bromine during the disinfection process. Concentrations of TBr in treatment units, rather than raw water, were significantly correlated to 34 of the Br-DBPs at α = 0.05. This study provides the first evidence that monthly trends of unregulated Br-DBPs can be associated with the concentration of TBr in treated waters. - Ultrahigh resolution mass spectrometry was used to identify novel brominated disinfection byproducts in a Canadian water treatment facility. - Several hundred novel brominated compounds were identified of which 54 were assigned chemical structures. - Seasonal variation in the generated DBPs were assessed over 11 months of sampling. - Increases in total bromine in drinking water was noted with progress thru the treatment process.
DOI
bib
abs
Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities
Patrick M. D’Aoust,
Xin Tian,
Syeda Tasneem Towhid,
Amy Xiao,
Élisabeth Mercier,
Nada Hegazy,
Jianjun Jia,
Shen Wan,
Md Pervez Kabir,
Wanting Fang,
Meghan Fuzzen,
Maria E. Hasing,
Minqing Ivy Yang,
Jianxian Sun,
Julio Plaza‐Díaz,
Zhihao Zhang,
Aaron Cowan,
Walaa Eid,
Sean Stephenson,
Mark R. Servos,
Matthew J. Wade,
Alex MacKenzie,
Hui Peng,
Elizabeth A. Edwards,
Xiaoli Pang,
Eric J. Alm,
Tyson E. Graber,
Robert Delatolla
Science of The Total Environment, Volume 853
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
2020
DOI
bib
abs
Mechanisms of pH-Dependent Uptake of Ionizable Organic Chemicals by Fish from Oil Sands Process-Affected Water (OSPW)
Markus Brinkmann,
Hattan A. Alharbi,
Ulyana Fuchylo,
Steve Wiseman,
Garrett Morandi,
Hui Peng,
John P. Giesy,
Paul D. Jones,
Markus Hecker
Environmental Science & Technology, Volume 54, Issue 15
Uptake and effects of ionizable organic chemicals (IOCs) that are weak acids in aqueous solution by fish can differ as a function of pH. While the pH-dependent behavior of select IOCs is well-understood, complex mixtures of IOCs, e.g., from oil sands process-affected water (OSPW), have not yet been studied systematically. Here, we established an in vitro screening method using the rainbow trout gill cell line, RTgill-W1, to investigate pH-dependent cytotoxicity and permeation of IOCs across cultured epithelia using ultra-high-performance liquid chromatography with high-resolution mass spectrometry (UPLC-HRMS). The assay was benchmarked using model chemicals and technical mixtures, and then used to characterize fractions and reconstituted extracts of field-collected OSPW. Significant pH-dependent cytotoxicity of individual IOCs, acidic fractions, and reconstituted extracts of OSPW was observed. In vitro data were in good agreement with data from a 96 h in vivo exposure experiment with juvenile rainbow trout. Permeation of some IOCs from OSPW was mediated by active transport, as revealed by studies in which inhibitors of these active transport mechanisms were applied. We conclude that the RTgill-W1 in vitro assay is useful for the screening of pH-dependent uptake of IOCs in fish, and has applications for in vitro-in vivo extrapolation, and prioritization of chemicals in nontarget screenings.
DOI
bib
abs
Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (<i>Danio rerio</i>) Is Prone to Aromatic Substituent Changes
Jiajun Han,
Diwen Yang,
David Ross Hall,
Jia‐Bao Liu,
Jianxian Sun,
Wen Gu,
Song Tang,
Hattan A. Alharbi,
Paul D. Jones,
Henry M. Krause,
Hui Peng
Environmental Science & Technology, Volume 54, Issue 7
Brominated azo dyes (BADs) have been identified as predominant indoor brominated pollutants in daycare dust; thus, their potential health risk to children is of concern. However, the toxicities of BADs remain elusive. In this study, the toxicokinetics of two predominant BADs, Disperse Blue 373 (DB373) and Disperse Violet 93 (DV93), and their suspect metabolite 2-bromo-4,6-dinitroaniline (BDNA) was investigated in embryos of zebrafish (Danio rerio). The bioconcentration factor of DV93 at 120 hpf is 6.2-fold lower than that of DB373. The nontarget analysis revealed distinct metabolism routes between DB373 and DV93 by reducing nitro groups to nitroso (DB373) or amine (DV93), despite their similar structures. NAD(P)H quinone oxidoreductase 1 (NQO1) and pyruvate dehydrogenase were predicted as the enzymes responsible for the reduction of DB373 and DV93 by correlating time courses of the metabolites and enzyme development. Further in vitro recombinant enzyme and in vivo inhibition results validated NQO1 as the enzyme specifically reducing DB373, but not DV93. Global proteome profiling revealed that the expression levels of proteins from the "apoptosis-induced DNA fragmentation" pathway were significantly upregulated by all three BADs, supporting the bioactivation of BADs to mutagenic aromatic amines. This study discovered the bioactivation of BADs via distinct eukaryotic enzymes, implying their potential health risks.
2019
DOI
bib
abs
Abundances and concentrations of brominated azo dyes detected in indoor dust
Birendra Dhungana,
Hui Peng,
Steven Kutarna,
Gisela de Aragão Umbuzeiro,
Sujan Shrestha,
Jing Liu,
Paul D. Jones,
Bikram Subedi,
John P. Giesy,
George P. Cobb
Environmental Pollution, Volume 252
Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.
DOI
bib
abs
Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river
Xiaohui Zhang,
Song Tang,
Mao Wang,
Weimin Sun,
Yuwei Xie,
Hui Peng,
Aimin Zhong,
Hongling Liu,
Xiaowei Zhang,
Hongxia Yu,
John P. Giesy,
Markus Hecker
Chemosphere, Volume 217
Acid mine drainage (AMD) is one of the most hazardous byproducts of some types of mining. However, research on how AMD affects the bacterial community structure of downstream riverine ecosystems and the distribution of metal resistance genes (MRGs) along pollution gradient is limited. Comprehensive geochemical and high-throughput next-generation sequencing analyses can be integrated to characterize spatial distributions and MRG profiles of sediment bacteria communities along the AMD-contaminated Hengshi River. We found that (1) diversities of bacterial communities significantly and gradually increased along the river with decreasing contamination, suggesting community composition reflected changes in geochemical conditions; (2) relative abundances of phyla Proteobacteria and genus Halomonas and Planococcaceae that function in metal reduction decreased along the AMD gradient; (3) low levels of sediment salinity, sulfate, aquatic lead (Pb), and cadmium (Cd) were negatively correlated with bacterial diversity despite pH was in a positive manner with diversity; and (4) arsenic (As) and copper (Cu) resistance genes corresponded to sediment concentrations of As and Cu, respectively. Altogether, our findings offer initial insight into the distribution patterns of sediment bacterial community structure, diversity and MRGs along a lotic ecosystem contaminated by AMD, and the factors that affect them.