2023
DOI
bib
abs
Impact of climate change on catchment nutrient dynamics: insights from around the world
Diogo Costa,
Caleb Sutter,
A. Shepherd,
Helen P. Jarvie,
Henry F. Wilson,
J. G. Elliott,
Jian Liu,
Merrin L. Macrae,
Diogo Costa,
Caleb Sutter,
A. Shepherd,
Helen P. Jarvie,
Henry F. Wilson,
J. G. Elliott,
Jian Liu,
Merrin L. Macrae
Environmental Reviews, Volume 31, Issue 1
This study is a meta-analysis of global articles on hydrological nutrient dynamics to determine trends and consensus on: (1) the effects of climate change-induced hydrological and temperature drivers on nutrient dynamics and how these effects vary along the catchment continuum from land to river to lake; (2) the convergence of climate change impacts with other anthropogenic pressures (agriculture, urbanization) in nutrient dynamics; and (3) regional variability in the effects of climate change on nutrient dynamics and water-quality impairment across different climate zones. An innovative web crawler tool was employed to help critically synthesize the information in the literature. The literature suggests that climate change will impact nutrient dynamics around the globe and exacerbate contemporary water-quality challenges. Nutrient leaching and overland flow transport are projected to increase globally, promoted by extreme precipitation. Seasonal variations in streamflow are expected to emulate changing precipitation patterns, but the specific local impacts of climate change on hydrology and nutrient dynamics will vary both seasonally and regionally. Plant activity may reduce some of this load in nonagricultural soils if the expected increase in plant uptake of nutrients prompted by increased temperatures can compensate for greater nitrogen (N) and phosphorus (P) mineralization, N deposition, and leaching rates. High-temperature forest and grass fires may help reduce mineralization and microbial turnover by altering N speciation via the pyrolysis of organic matter. In agricultural areas that are at higher risk of erosion, extreme precipitation will exacerbate existing water-quality issues, and greater plant nutrient uptake may lead to an increase in fertilizer use. Future urban expansion will amplify these effects. Higher ambient temperatures will promote harmful cyanobacterial blooms by enhancing thermal stratification, increasing nutrient load into streams and lakes from extreme precipitation events, decreasing summer flow and thus baseflow dilution capacity, and increasing water and nutrient residence times during increasingly frequent droughts. Land management decisions must consider the nuanced regional and seasonal changes identified in this review (realized and predicted). Such knowledge is critical to increasing international cooperation and accelerating action toward the United Nations’s global sustainability goals and the specific objectives of the Conference of Parties (COP) 26.
DOI
bib
abs
Impact of climate change on catchment nutrient dynamics: insights from around the world
Diogo Costa,
Caleb Sutter,
A. Shepherd,
Helen P. Jarvie,
Henry F. Wilson,
J. G. Elliott,
Jian Liu,
Merrin L. Macrae,
Diogo Costa,
Caleb Sutter,
A. Shepherd,
Helen P. Jarvie,
Henry F. Wilson,
J. G. Elliott,
Jian Liu,
Merrin L. Macrae
Environmental Reviews, Volume 31, Issue 1
This study is a meta-analysis of global articles on hydrological nutrient dynamics to determine trends and consensus on: (1) the effects of climate change-induced hydrological and temperature drivers on nutrient dynamics and how these effects vary along the catchment continuum from land to river to lake; (2) the convergence of climate change impacts with other anthropogenic pressures (agriculture, urbanization) in nutrient dynamics; and (3) regional variability in the effects of climate change on nutrient dynamics and water-quality impairment across different climate zones. An innovative web crawler tool was employed to help critically synthesize the information in the literature. The literature suggests that climate change will impact nutrient dynamics around the globe and exacerbate contemporary water-quality challenges. Nutrient leaching and overland flow transport are projected to increase globally, promoted by extreme precipitation. Seasonal variations in streamflow are expected to emulate changing precipitation patterns, but the specific local impacts of climate change on hydrology and nutrient dynamics will vary both seasonally and regionally. Plant activity may reduce some of this load in nonagricultural soils if the expected increase in plant uptake of nutrients prompted by increased temperatures can compensate for greater nitrogen (N) and phosphorus (P) mineralization, N deposition, and leaching rates. High-temperature forest and grass fires may help reduce mineralization and microbial turnover by altering N speciation via the pyrolysis of organic matter. In agricultural areas that are at higher risk of erosion, extreme precipitation will exacerbate existing water-quality issues, and greater plant nutrient uptake may lead to an increase in fertilizer use. Future urban expansion will amplify these effects. Higher ambient temperatures will promote harmful cyanobacterial blooms by enhancing thermal stratification, increasing nutrient load into streams and lakes from extreme precipitation events, decreasing summer flow and thus baseflow dilution capacity, and increasing water and nutrient residence times during increasingly frequent droughts. Land management decisions must consider the nuanced regional and seasonal changes identified in this review (realized and predicted). Such knowledge is critical to increasing international cooperation and accelerating action toward the United Nations’s global sustainability goals and the specific objectives of the Conference of Parties (COP) 26.
2021
DOI
bib
abs
Advances in the simulation of nutrient dynamics in cold climate agricultural basins: Developing new nitrogen and phosphorus modules for the Cold Regions Hydrological Modelling Platform
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae,
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae
Journal of Hydrology, Volume 603
• Application of popular catchment nutrient models is problematic in cold regions. • New nutrient modules have been developed for the Cold Regions Hydrological Model. • The model was applied to a sub-basin of the increasingly eutrophic Lake Winnipeg, Canada. • Simulated SWE, discharge, NO3, NH4, SRP and partP were compared against observations. • Typical ∼9 day-freshet accounted for 16–31% of the total annual nutrient load. Excess nutrients in aquatic ecosystems is a major water quality problem globally. Worsening eutrophication issues are notable in cold temperate areas, with pervasive problems in many agriculturally dominated catchments. Predicting nutrient export to rivers and lakes is particularly difficult in cold agricultural environments because of challenges in modelling snow, soil, frozen ground, climate, and anthropogenic controls. Previous research has shown that the use of many popular small basin nutrient models can be problematic in cold regions due to poor representation of cold region hydrology. In this study, the Cold Regions Hydrological Modelling Platform (CRHM), a modular modelling system, which has been widely deployed across Canada and cold regions worldwide, was used to address this problem. CRHM was extended to simulate biogeochemical and transport processes for nitrogen and phosphorus through a complex of new process-based modules that represent physicochemical processes in snow, soil and freshwater. Agricultural practices such as tillage and fertilizer application, which strongly impact the availability and release of soil nutrients, can be explicitly represented in the model. A test case in an agricultural basin draining towards Lake Winnipeg shows that the model can capture the extreme hydrology and nutrient load variability of small agricultural basins at hourly time steps. It was demonstrated that fine temporal resolutions are an essential modelling requisite to capture strong concentration changes in agricultural tributaries in cold agricultural environments. Within these ephemeral and intermittent streams, on average, 30%, 31%, 20%, and 16% of the total annual load of nitrate (NO 3 ), ammonium (NH 4 ), soluble reactive phosphorus (SRP), and particulate phosphorous (partP)NO 3 , NH 4 , SRP and partP occurred during the episodic snowmelt freshet ( ∼ 9 days, accounting for 21% of the annual flow), but shows extreme temporal variation. The new nutrient modules are critical tools for predicting nutrient export from small agricultural drainage basins in cold climates via better representation of key hydrological processes, and a temporal resolution more suited to capture dynamics of ephemeral and intermittent streams.
DOI
bib
abs
Advances in the simulation of nutrient dynamics in cold climate agricultural basins: Developing new nitrogen and phosphorus modules for the Cold Regions Hydrological Modelling Platform
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae,
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae
Journal of Hydrology, Volume 603
• Application of popular catchment nutrient models is problematic in cold regions. • New nutrient modules have been developed for the Cold Regions Hydrological Model. • The model was applied to a sub-basin of the increasingly eutrophic Lake Winnipeg, Canada. • Simulated SWE, discharge, NO3, NH4, SRP and partP were compared against observations. • Typical ∼9 day-freshet accounted for 16–31% of the total annual nutrient load. Excess nutrients in aquatic ecosystems is a major water quality problem globally. Worsening eutrophication issues are notable in cold temperate areas, with pervasive problems in many agriculturally dominated catchments. Predicting nutrient export to rivers and lakes is particularly difficult in cold agricultural environments because of challenges in modelling snow, soil, frozen ground, climate, and anthropogenic controls. Previous research has shown that the use of many popular small basin nutrient models can be problematic in cold regions due to poor representation of cold region hydrology. In this study, the Cold Regions Hydrological Modelling Platform (CRHM), a modular modelling system, which has been widely deployed across Canada and cold regions worldwide, was used to address this problem. CRHM was extended to simulate biogeochemical and transport processes for nitrogen and phosphorus through a complex of new process-based modules that represent physicochemical processes in snow, soil and freshwater. Agricultural practices such as tillage and fertilizer application, which strongly impact the availability and release of soil nutrients, can be explicitly represented in the model. A test case in an agricultural basin draining towards Lake Winnipeg shows that the model can capture the extreme hydrology and nutrient load variability of small agricultural basins at hourly time steps. It was demonstrated that fine temporal resolutions are an essential modelling requisite to capture strong concentration changes in agricultural tributaries in cold agricultural environments. Within these ephemeral and intermittent streams, on average, 30%, 31%, 20%, and 16% of the total annual load of nitrate (NO 3 ), ammonium (NH 4 ), soluble reactive phosphorus (SRP), and particulate phosphorous (partP)NO 3 , NH 4 , SRP and partP occurred during the episodic snowmelt freshet ( ∼ 9 days, accounting for 21% of the annual flow), but shows extreme temporal variation. The new nutrient modules are critical tools for predicting nutrient export from small agricultural drainage basins in cold climates via better representation of key hydrological processes, and a temporal resolution more suited to capture dynamics of ephemeral and intermittent streams.
2020
DOI
bib
abs
Predicting Variable Contributing Areas, Hydrological Connectivity, and Solute Transport Pathways for a Canadian Prairie Basin
Diogo Costa,
Kevin Shook,
Chris Spence,
J. G. Elliott,
Helen M. Baulch,
Henry F. Wilson,
John W. Pomeroy
Water Resources Research, Volume 56, Issue 12
In cold agricultural regions, seasonal snowmelt over frozen soils provides the primary source of runoff and transports large nutrient loads downstream. The postglacial landscape of the Canadian Prairies and Northern Plains of the United States creates challenges for hydrological and water quality modeling. Here, the application of conventional hydrological models is problematic because of cold regions hydrological and chemical processes, the lack of fluvially eroded drainage systems, large noncontributing areas to streamflow and level topography. A new hydrodynamic model was developed to diagnose overland flow from snowmelt in this situation. The model was used to calculate the effect of variable contributing areas on (1) hydrological connectivity and the development of (2) tipping points in streamflow generation and (3) predominant chemical transport pathways. The agricultural Steppler Basin in Manitoba, Canada, was used to evaluate the model and diagnose snowmelt runoff. Relationships were established between contributing area and (1) snowmelt runoff intensity, (2) seasonal snowmelt volumes and duration, and (3) inundated, active and connected areas. Variations in the contributing area depended on terrain and snowmelt characteristics including wind redistribution of snow. Predictors of hydrological response and the size of the contributing area were developed which can be used in larger scale hydrological models of similar regions
Abstract The hydrology of cold regions has been studied for decades with substantial progress in process understanding and prediction. Simultaneously, work on nutrient yields from agricultural land in cold regions has shown much slower progress. Advancement of nutrient modelling is constrained by well-documented issues of spatial heterogeneity, climate dependency, data limitations and over-parameterization of models, as well as challenges specific to cold regions due to the complex (and often unknown) behaviour of hydro-biogeochemical processes at temperatures close to and below freezing where a phase change occurs. This review is a critical discussion of these issues by taking a close look at the conceptual models and methods behind used catchment nutrient models. The impact of differences in model structure and the methods used for the prediction of hydrological processes, erosion and biogeochemical cycles are examined. The appropriateness of scale, scope, and complexity of models are discussed to propose future research directions.
Abstract Freshwater ecosystems, particularly those in agricultural areas, remain at risk of eutrophication due to anthropogenic inputs of nutrients. While community-based monitoring has helped improve awareness and spur action to mitigate nutrient loads, monitoring is challenging due to the reliance on expensive laboratory technology, poor data management, time lags between measurement and availability of results, and risk of sample degradation during transport or storage. In this study, an easy-to-use smartphone-based application (The Nutrient App) was developed to estimate NO 3 and PO 4 concentrations through the image-processing of on-site qualitative colorimetric-based results obtained via cheap commercially-available instantaneous test kits. The app was tested in rivers, wetlands, and lakes across Canada and relative errors between 30% (filtered samples) and 70% (unfiltered samples) were obtained for both NO 3 and PO 4 . The app can be used to identify sources and hotspots of contamination, which can empower communities to take immediate remedial action to reduce nutrient pollution.
2019
Reducing eutrophication in surface water is a major environmental challenge in many countries around the world. In cold Canadian prairie agricultural regions, part of the eutrophication challenge arises during spring snowmelt when a significant portion of the total annual nutrient export occurs, and plant residues can act as a nutrient source instead of a sink. Although the total mass of nutrients released from various crop residues has been studied before, little research has been conducted to capture fine-timescale temporal dynamics of nutrient leaching from plant residues, and the processes have not been represented in water quality models. In this study, we measured the dynamics of P and N release from a cold-hardy perennial plant species, alfalfa ( L.), to meltwater after freeze-thaw through a controlled snowmelt experiment. Various winter conditions were simulated by exposing alfalfa residues to different numbers of freeze-thaw cycles (FTCs) of uniform magnitude prior to snowmelt. The monitored P and N dynamics showed that most nutrients were released during the initial stages of snowmelt (first 5 h) and that the magnitude of nutrient release was affected by the number of FTCs. A threshold of five FTCs was identified for a greater nutrient release, with plant residue contributing between 0.29 (NO) and 9 (PO) times more nutrients than snow. The monitored temporal dynamics of nutrient release were used to develop the first process-based predictive model controlled by three potentially measurable parameters that can be integrated into catchment water quality models to improve nutrient transport simulations during snowmelt.
In northern regions, a high proportion of annual runoff and phosphorus (P) export from cropland occurs with snowmelt. In this study, we analyze 57 site-years of field-scale snowmelt runoff data from 16 small watersheds draining fine-textured soils (clay or clay loam) in Manitoba, Canada. These fields were selected across gradients of soil P (2.4 to 26.7 mg kg, 0- to 15-cm Olsen P), tillage intensity (high frequency to long-term no-till), and fertilizer input. The strongest predictor of flow-weighted mean concentrations of total dissolved P (TDP) in snowmelt runoff was Olsen P in the top 5 cm of soil ( = 0.45, < 0.01). Residual variation in this relationship related positively to volumetric soil moisture and negatively to water yield. Although Olsen P levels were relatively consistent from year to year, suggesting control by long-term fertilization and tillage history, Olsen P stratification (ratio of 0-5/0-15 cm) increased with rates of fertilizer application. Particulate P (PP) comprised <34% of total P on average, and concentrations were not well predicted by soil or management characteristics. Loads of PP and TDP exported during snowmelt were primarily a function of water yield and size of accumulated snowpack; however, residual variation in the TDP relationship correlated positively with both soil moisture and Olsen P. Retention of runoff water on the landscape could reduce loads, but careful management of near-surface soil P is required to prevent snowmelt runoff losses of P at the source and to reduce the potential for the eutrophication of downstream aquatic ecosystems.
There is great interest in modelling the export of nitrogen (N) and phosphorus (P) from agricultural fields because of ongoing challenges of eutrophication. However, the use of existing hydrochemistry models can be problematic in cold regions because models frequently employ incomplete or conceptually incorrect representations of the dominant cold regions hydrological processes and are overparameterized, often with insufficient data for validation. Here, a process‐based N model, WINTRA, which is coupled to a physically based cold regions hydrological model, was expanded to simulate P and account for overwinter soil nutrient biochemical cycling. An inverse modelling approach, using this model with consideration of parameter equifinality, was applied to an intensively monitored agricultural basin in Manitoba, Canada, to help identify the main climate, soil, and anthropogenic controls on nutrient export. Consistent with observations, the model results suggest that snow water equivalent, melt rate, snow cover depletion rate, and contributing area for run‐off generation determine the opportunity time and surface area for run‐off–soil interaction. These physical controls have not been addressed in existing models. Results also show that the time lag between the start of snowmelt and the arrival of peak nutrient concentration in run‐off increased with decreasing antecedent soil moisture content, highlighting potential implications of frozen soils on run‐off processes and hydrochemistry. The simulations showed TDP concentration peaks generally arriving earlier than NO₃ but also decreasing faster afterwards, which suggests a significant contribution of plant residue Total dissolved Phosphorus (TDP) to early snowmelt run‐off. Antecedent fall tillage and fertilizer application increased TDP concentrations in spring snowmelt run‐off but did not consistently affect NO₃ run‐off. In this case, the antecedent soil moisture content seemed to have had a dominant effect on overwinter soil N biogeochemical processes such as mineralization, which are often ignored in models. This work demonstrates both the need for better representation of cold regions processes in hydrochemical models and the model improvements that are possible if these are included.
2017
Modeling nutrient transport during snowmelt in cold regions remains a major scientific challenge. A key limitation of existing nutrient models for application in cold regions is the inadequate representation of snowmelt, including hydrological and biogeochemical processes. This brief period can account for more than 80% of the total annual surface runoff in the Canadian Prairies and Northern Canada and processes such as atmospheric deposition, over-winter redistribution of snow, ion exclusion from snow crystals, frozen soils, and snowcovered area depletion during melt influence the distribution and release of snow and soil nutrients, thus affecting the timing and magnitude of snowmelt runoff nutrient concentrations.Research in cold regions suggests that nitrate (NO3) runoff at the field scale can be divided into five phases during snowmelt. In the first phase, water and ions originating from ion-rich snow layers travel and diffuse through the snowpack. This process causes ion concentrations in runoff to gradually increase. The second phase occurs when this snow ion meltwater front has reached the bottom of the snowpack and forms runoff to the edge-of-the-field (EOF). During the third and fourth phases, the main source of NO3 transitions from the snowpack to the soil. Finally, the fifth and last phase occurs when the snow has completely melted, and the thawing soil becomes the main source of NO3 to the stream.In this research, a process-based model was developed to simulate hourly export based on this five-phase approach. Results from an application in the Red River Basin of southern Manitoba, Canada shows that the model can adequately capture the dynamics and rapid changes of NO3 concentrations during this period at relevant temporal resolutions. This is a significant achievement to advance the current nutrient modeling paradigm in cold climates, which is generally limited to satisfactory results at monthly or annual resolutions. The approach can inform catchment-scale nutrient models to improve simulation of this critical snowmelt period.Nutrient exports Winter Snow Nitrate Agriculture Nutrient model