2022
DOI
bib
abs
New projections of 21st century climate and hydrology for Alaska and Hawaiʻi
Naoki Mizukami,
Andrew J. Newman,
Jeremy S. Littell,
Thomas W. Giambelluca,
Andrew W. Wood,
E. D. Gutmann,
Joseph Hamman,
Diana R. Gergel,
Bart Nijssen,
Martyn Clark,
J. R. Arnold
Climate Services, Volume 27
In the United States, high-resolution, century-long, hydroclimate projection datasets have been developed for water resources planning, focusing on the contiguous United States (CONUS) domain. However, there are few statewide hydroclimate projection datasets available for Alaska and Hawaiʻi. The limited information on hydroclimatic change motivates developing hydrologic scenarios from 1950 to 2099 using climate-hydrology impact modeling chains consisting of multiple statistically downscaled climate projections as input to hydrologic model simulations for both states. We adopt an approach similar to the previous CONUS hydrologic assessments where: 1) we select the outputs from ten global climate models (GCM) from the Coupled Model Intercomparison Project Phase 5 with Representative Concentration Pathways 4.5 and 8.5; 2) we perform statistical downscaling to generate climate input data for hydrologic models (12-km grid-spacing for Alaska and 1-km for Hawaiʻi); and 3) we perform process-based hydrologic model simulations. For Alaska, we have advanced the hydrologic model configuration from CONUS by using the full water-energy balance computation, frozen soils and a simple glacier model. The simulations show that robust warming and increases in precipitation produce runoff increases for most of Alaska, with runoff reductions in the currently glacierized areas in Southeast Alaska. For Hawaiʻi, we produce the projections at high resolution (1 km) which highlight high spatial variability of climate variables across the state, and a large spread of runoff across the GCMs is driven by a large precipitation spread across the GCMs. Our new ensemble datasets assist with state-wide climate adaptation and other water planning.
Abstract Statistical processing of numerical model output has been a part of both weather forecasting and climate applications for decades. Statistical techniques are used to correct systematic biases in atmospheric model outputs and to represent local effects that are unresolved by the model, referred to as downscaling. Many downscaling techniques have been developed, and it has been difficult to systematically explore the implications of the individual decisions made in the development of downscaling methods. Here we describe a unified framework that enables the user to evaluate multiple decisions made in the methods used to statistically postprocess output from weather and climate models. The Ensemble Generalized Analog Regression Downscaling (En-GARD) method enables the user to select any number of input variables, predictors, mathematical transformations, and combinations for use in parametric or nonparametric downscaling approaches. En-GARD enables explicitly predicting both the probability of event occurrence and the event magnitude. Outputs from En-GARD include errors in model fit, enabling the production of an ensemble of projections through sampling of the probability distributions of each climate variable. We apply En-GARD to regional climate model simulations to evaluate the relative importance of different downscaling method choices on simulations of the current and future climate. We show that choice of predictor variables is the most important decision affecting downscaled future climate outputs, while having little impact on the fidelity of downscaled outcomes for current climate. We also show that weak statistical relationships prevent such approaches from predicting large changes in extreme events on a daily time scale.
Abstract Surface meteorological analyses serve a wide range of research and applications, including forcing inputs for hydrological and ecological models, climate analysis, and resource and emergency management. Quantifying uncertainty in such analyses would extend their utility for probabilistic hydrologic prediction and climate risk applications. With this motivation, we enhance and evaluate an approach for generating ensemble analyses of precipitation and temperature through the fusion of station observations, terrain information, and numerical weather prediction simulations of surface climate fields. In particular, we expand a spatial regression in which static terrain attributes serve as predictors for spatially distributed 1/16th degree daily surface precipitation and temperature by including forecast outputs from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction model as additional predictors. We demonstrate the approach for a case study domain of California, focusing on the meteorological conditions leading to the 2017 flood and spillway failure event at Lake Oroville. The approach extends the spatial regression capability of the Gridded Meteorological Ensemble Tool (GMET) and also adds cross-validation to the uncertainty estimation component, enabling the use of predictive rather than calibration uncertainty. In evaluation against out-of-sample station observations, the HRRR-based predictors alone are found to be skillful for the study setting, leading to overall improvements in the enhanced GMET meteorological analyses. The methodology and associated tool represent a promising method for generating meteorological surface analyses for both research-oriented and operational applications, as well as a general strategy for merging in situ and gridded observations.
2021
The Arctic has been warming faster than the global average during recent decades, and trends are projected to continue through the twenty-first century. Analysis of climate change impacts across the Arctic using dynamical models has almost exclusively been limited to outputs from global climate models or coarser regional climate models. Coarse resolution simulations limit the representation of physical processes, particularly in areas of complex topography and high land-surface heterogeneity. Here, current climate reference and future regional climate model simulations based on the RCP8.5 scenario over Alaska at 4 km grid spacing are compared to identify changes in snowfall and snowpack. In general, results show increases in total precipitation, large decreases in snowfall fractional contribution over 30% in some areas, decreases in snowpack season length by 50–100 days in lower elevations and along the southern Alaskan coastline, and decreases in snow water equivalent. However, increases in snowfall and snowpack of sometimes greater than 20% are evident for some colder northern areas and at the highest elevations in southern Alaska. The most significant changes in snow cover and snowfall fractional contributions occur during the spring and fall seasons. Finally, the spatial pattern of winter temperatures above freezing has small-scale spatial features tied to the topography. Such areas would not be resolved with coarser resolution regional or global climate model simulations.
2020
It is challenging to develop observationally based spatial estimates of meteorology in Alaska and the Yukon. Complex topography, frozen precipitation undercatch, and extremely sparse in situ observations all limit our capability to produce accurate spatial estimates of meteorological conditions. In this Arctic environment, it is necessary to develop probabilistic estimates of precipitation and temperature that explicitly incorporate spatiotemporally varying uncertainty and bias corrections. In this paper we exploit the recently developed ensemble Climatologically Aided Interpolation (eCAI) system to produce daily historical estimates of precipitation and temperature across Alaska and the Yukon Territory at a 2 km grid spacing for the time period 1980–2013. We extend the previous eCAI method to address precipitation gauge undercatch and wetting loss, which is of high importance for this high-latitude region where much of the precipitation falls as snow. Leave-one-out cross-validation shows our ensemble has little bias in daily precipitation and mean temperature at the station locations, with an overestimate in the daily standard deviation of precipitation. The ensemble is statistically reliable compared to climatology and can discriminate precipitation events across different precipitation thresholds. Long-term mean loss adjusted precipitation is up to 36% greater than the unadjusted estimate in windy areas that receive a large fraction of frozen precipitation, primarily due to wind induced undercatch. Comparing the ensemble mean climatology of precipitation and temperature to PRISM and Daymet v3 shows large interproduct differences, particularly in precipitation across the complex terrain of southeast and northern Alaska.
2019
DOI
bib
abs
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates
O. Chegwidden,
Bart Nijssen,
David E. Rupp,
J. R. Arnold,
Martyn Clark,
Joseph Hamman,
Shih‐Chieh Kao,
Yixin Mao,
Naoki Mizukami,
Philip W. Mote,
Ming Pan,
Erik Pytlak,
Mu Xiao
Earth's Future, Volume 7, Issue 6
Methodological choices can have strong effects on projections of climate change impacts on hydrology. In this study, we investigate the ways in which four different steps in the modeling chain influence the spread in projected changes of different aspects of hydrology. To form the basis of these analyses, we constructed an ensemble of 160 simulations from permutations of two Representative Concentration Pathways, 10 global climate models, two downscaling methods, and four hydrologic model implementations. The study is situated in the Pacific Northwest of North America, which has relevance to a diverse, multinational cast of stakeholders. We analyze the effects of each modeling decision on changes in gridded hydrologic variables of snow water equivalent and runoff, as well as streamflow at point locations. Results show that the choice of representative concentration pathway or global climate model is the driving contributor to the spread in annual streamflow volume and timing. On the other hand, hydrologic model implementation explains most of the spread in changes in low flows. Finally, by grouping the results by climate region the results have the potential to be generalized beyond the Pacific Northwest. Future hydrologic impact assessments can use these results to better tailor their modeling efforts.
2018
Abstract Water managers are actively incorporating climate change information into their long- and short-term planning processes. This is generally seen as a step in the right direction because it supplements traditional methods, providing new insights that can help in planning for a non-stationary climate. However, the continuous evolution of climate change information can make it challenging to use available information appropriately. Advice on how to use the information is not always straightforward and typically requires extended dialogue between information producers and users, which is not always feasible. To help navigate better the ever-changing climate science landscape, this review is organized as a set of nine guidelines for water managers and planners that highlight better practices for incorporating climate change information into water resource planning and management. Each DOs and DON'Ts recommendation is given with context on why certain strategies are preferable and addresses frequently asked questions by exploring past studies and documents that provide guidance, including real-world examples mainly, though not exclusively, from the United States. This paper is intended to provide a foundation that can expand through continued dialogue within and between the climate science and application communities worldwide, a two-way information sharing that can increase the actionable nature of the information produced and promote greater utility and appropriate use.