James W. Kirchner


DOI bib
Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling
Sebastian A. Krogh, Lucia Scaff, Gary Sterle, James W. Kirchner, Beatrice Gordon, Adrian A. Harpold

Abstract. Climate warming may cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so physically based models are needed for hydrological predictions and analyses. We develop an observational technique for detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow. We measure the 20th percentile of snowmelt days (DOS20), across 31 watersheds in the western US, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May, with warmer sites having earlier and more intermittent snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), suggesting that a one-day earlier DOS20 corresponds with a one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical projections of future DOS20 (RCP8.5, late 21st century), using space-for-time substitution, show that DOS20 will occur 11 ± 4 days earlier per 1 °C of warming, and that colder places (mean November–February air temperature, TNDJF <−8 °C) are 70 % more sensitive to climate change on average than warmer places (TNDJF > 0 °C). Moreover, empirical space-for-time based projections of DOQ25 and DOQ50 are about four and two times more sensitive to earlier streamflow than those from NoahMP-WRF. Given the importance of changing streamflow timing for headwater resources, snowmelt detection methods such as DOS20 based on diel streamflow cycles may constrain hydrological models and improve hydrological predictions.


DOI bib
Hillslope Hydrology in Global Change Research and Earth System Modeling
Ying Fan, Martyn P. Clark, David M. Lawrence, Sean Swenson, Lawrence E. Band, Susan L. Brantley, P. D. Brooks, W. E. Dietrich, Alejandro N. Flores, Gordon E. Grant, James W. Kirchner, D. S. Mackay, Jeffrey J. McDonnell, P. C. D. Milly, Pamela Sullivan, Christina Tague, Hoori Ajami, Nathaniel W. Chaney, Andreas Hartmann, P. Hazenberg, J. P. McNamara, Jon D. Pelletier, J. Perket, Elham Rouholahnejad Freund, Thorsten Wagener, Xubin Zeng, R. Edward Beighley, Jonathan Buzan, Maoyi Huang, Ben Livneh, Binayak P. Mohanty, Bart Nijssen, Mohammad Safeeq, Chaopeng Shen, Willem van Verseveld, John Volk, Dai Yamazaki
Water Resources Research, Volume 55, Issue 2

Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐m deep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.