2023
DOI
bib
abs
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts,
Mary Farina,
John S. Kimball,
Luke Schiferl,
Zhihua Liu,
Kyle A. Arndt,
Donatella Zona,
Ashley P. Ballantyne,
Eugénie Euskirchen,
Frans-Jan W. Parmentier,
Manuel Helbig,
Oliver Sonnentag,
Torbern Tagesson,
Janne Rinne,
Hiroki Ikawa,
Masahito Ueyama,
Hideki Kobayashi,
Torsten Sachs,
Daniel F. Nadeau,
John Kochendorfer,
Marcin Jackowicz-Korczyński,
Anna‐Maria Virkkala,
Mika Aurela,
R. Commane,
Brendan Byrne,
Leah Birch,
Matthew S. Johnson,
Nima Madani,
Brendan M. Rogers,
Jinyang Du,
Arthur Endsley,
K. E. Savage,
B. Poulter,
Zhen Zhang,
L. Bruhwiler,
Charles E. Miller,
Scott J. Goetz,
Walter C. Oechel
Global Change Biology, Volume 29, Issue 7
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.
2022
DOI
bib
abs
Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
Manuel Helbig,
Tatjana Živković,
Pavel Alekseychik,
Mika Aurela,
Tarek S. El‐Madany,
Eugénie Euskirchen,
Lawrence B. Flanagan,
T. J. Griffis,
Paul J. Hanson,
J. Hattakka,
Carole Helfter,
Takashi Hirano,
Elyn Humphreys,
Gérard Kiely,
Randall K. Kolka,
Tuomas Laurila,
Paul Leahy,
Annalea Lohila,
Ivan Mammarella,
Mats Nilsson,
А. В. Панов,
Frans‐Jan W. Parmentier,
Matthias Peichl,
Janne Rinne,
Daniel T. Roman,
Oliver Sonnentag,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Timo Vesala,
Patrik Vestin,
Simon Weldon,
Per Weslien,
Sönke Zaehle
Nature Climate Change, Volume 12, Issue 8
Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
2021
DOI
bib
abs
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang,
William J. Riley,
Sara Knox,
Robert B. Jackson,
Gavin McNicol,
Benjamin Poulter,
Mika Aurela,
Dennis Baldocchi,
Sheel Bansal,
Gil Bohrer,
David I. Campbell,
Alessandro Cescatti,
Housen Chu,
Kyle Delwiche,
Ankur R. Desai,
Eugénie Euskirchen,
Thomas Friborg,
Mathias Goeckede,
Manuel Helbig,
Kyle S. Hemes,
Takashi Hirano,
Hiroyasu Iwata,
Minseok Kang,
Trevor F. Keenan,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Bhaskar Mitra,
Akira Miyata,
Mats Nilsson,
Asko Noormets,
Walter C. Oechel,
Dario Papale,
Matthias Peichl,
Michele L. Reba,
Janne Rinne,
Benjamin R. K. Runkle,
Youngryel Ryu,
Torsten Sachs,
Karina V. R. Schäfer,
Hans Peter Schmid,
Narasinha Shurpali,
Oliver Sonnentag,
Angela C. I. Tang,
M. S. Torn,
Carlo Trotta,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Rodrigo Vargas,
Timo Vesala,
Lisamarie Windham‐Myers,
Zhen Zhang,
Donatella Zona
Nature Communications, Volume 12, Issue 1
Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.
2019
DOI
bib
abs
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola,
Timo Vesala,
Yao Gao,
Olle Räty,
Pavel Alekseychik,
Mika Aurela,
Bogdan H. Chojnicki,
Ankur R. Desai,
Han Dolman,
Eugénie Euskirchen,
Thomas Friborg,
Mathias Göckede,
Manuel Helbig,
Elyn Humphreys,
Robert B. Jackson,
Georg Jocher,
Fortunat Joos,
Janina Klatt,
Sara Knox,
Natalia Kowalska,
Lars Kutzbach,
Sebastian Lienert,
Annalea Lohila,
Ivan Mammarella,
Daniel F. Nadeau,
Mats Nilsson,
Walter C. Oechel,
Matthias Peichl,
Thomas G. Pypker,
William L. Quinton,
Janne Rinne,
Torsten Sachs,
Mateusz Samson,
Hans Peter Schmid,
Oliver Sonnentag,
Christian Wille,
Donatella Zona,
Tuula Aalto
Earth System Science Data, Volume 11, Issue 3
Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).