Jeffrey J. McDonnell


2023

DOI bib
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell, Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331

Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.

DOI bib
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell, Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331

Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.

2022

DOI bib
Using stable isotopes to track hydrological processes at an oil sands mine, Alberta, Canada
Spencer Joseph Chad, S. Lee Barbour, Jeffrey J. McDonnell, J. J. Gibson
Journal of Hydrology: Regional Studies, Volume 40

This study was conducted at an oil sands operation in the Athabasca Oil Sands Region (AOSR), northeastern Alberta, Canada. The mine comprises open pit excavation of bituminous sands at two sites (Mildred Lake, ML, and Aurora North, AN), with a single hot-water extraction circuit connecting extraction plants at each mine. Water samples were collected and analyzed regularly over an eight-year period to establish inventories of site-wide water isotope signatures including seasonal and interannual changes in the recycle water circuit, and to permit future application of an isotope balance model to constrain poorly quantified processes such as evaporation losses, dewatering of tailings, and tailings pond connectivity of the recycle water circuit. Sampling of precipitation inputs over an 8-year period was used to constrain a local meteoric water line for the area. Differences in evaporative isotopic enrichment of tailings ponds at ML and AN are attributed to use of Athabasca River makeup water at the former site versus basal dewatering sources at the latter, with similar atmospheric controls at both. A conceptual model is developed summarizing temporal variations in water balance and isotopic signatures within the recycle water circuit, including accurate simulation of the unique isotopic enrichment of cooling tower blowdown. This study provides foundational evidence for application of stable isotope mass balance to monitor and improve industrial water use efficiency and management. • Detailed summary of stable isotope variations at oil sands mine sites. • New dataset for precipitation, makeup water, and mine circuits. • Updated regressions defining local meteoric water line for district. • Contrasts isotopic variations for nearby mine sites with distinct sources. • Previously unpublished effects of cooling tower blowdown.

DOI bib
Snowmelt Water Use at Transpiration Onset: Phenology, Isotope Tracing, and Tree Water Transit Time
Magali F. Nehemy, Jason Maillet, Nia Perron, Christoforos Pappas, Oliver Sonnentag, Jennifer L. Baltzer, Colin P. Laroque, Jeffrey J. McDonnell
Water Resources Research, Volume 58, Issue 9

Studies of tree water source partitioning have primarily focused on the growing season. However, little is yet known about the source of transpiration before, during, and after snowmelt when trees rehydrate and recommence transpiration in the spring. This study investigates tree water use during spring snowmelt following tree's winter stem shrinkage. We document the source of transpiration of three boreal forest tree species—Pinus banksiana, Picea mariana, and Larix laricina—by combining observations of weekly isotopic signatures (δ18O and δ2H) of xylem, soil water, rainfall and snowmelt with measurements of soil moisture dynamics, snow depth and high-resolution temporal measurements of stem radius changes and sap flow. Our data shows that the onset of stem rehydration and transpiration overlaps with snowmelt for evergreens. During rehydration and transpiration onset, xylem water at the canopy reflected a constant pre-melt isotopic signature likely showing late fall conditions. As snowmelt infiltrates the soil and recharges the soil matrix, soil water shows a rapid isotopic shift to depleted-snowmelt water values. While there was an overlap between snowmelt and transpiration timing, xylem and soil water isotopic values did not overlap during transpiration onset. Our data showed 1–2-week delay in the shift in xylem water from pre-melt to clear snowmelt-depleted water signatures in evergreen species. This delay appears to be controlled by tree water transit time that was in the order of 9–18 days. Our study shows that snowmelt is a key source for stem rehydration and transpiration in the boreal forest during spring onset.

DOI bib
Phloem water isotopically different to xylem water: Potential causes and implications for ecohydrological tracing
Magali F. Nehemy, Paolo Benettin, Scott T. Allen, Kathy Steppe, Andrea Rinaldo, Marco M. Lehmann, Jeffrey J. McDonnell
Ecohydrology, Volume 15, Issue 3

Abstract The stable isotopes of hydrogen and oxygen in xylem water are often used to investigate tree water sources. But this traditional approach does not acknowledge the contribution of water stored in the phloem to transpiration and how this may affect xylem water and source water interpretations. Additionally, there is a prevailing assumption that there is no isotope fractionation during tree water transport. Here, we systematically sampled xylem and phloem water at daily and subdaily resolutions in a large lysimeter planted with Salix viminalis . Stem diurnal change in phloem water storage and transpiration rates were also measured. Our results show that phloem water is significantly less enriched in heavy isotopes than xylem water. At subdaily resolution, we observed a larger isotopic difference between xylem and phloem during phloem water refilling and under periods of tree water deficit. These findings contrast with the expectation of heavy‐isotope enriched water in phloem due to downward transport of enriched leaf water isotopic signatures. Because of previous evidence of aquaporin mediated phloem and xylem water transport and higher osmotic permeability of lighter hydrogen isotopologues across aquaporins, we propose that radial water transport across the xylem–phloem boundary may drive the relative depletion of heavy isotopes in phloem and their relative enrichment in xylem.

DOI bib
On the urgent need for standardization in isotope‐based ecohydrological investigations
Cody Millar, Kim Janzen, Magali F. Nehemy, Geoff Koehler, Pedro Hervé‐Fernández, Hongxiu Wang, Natalie Orlowski, Adrià Barbeta, Jeffrey J. McDonnell
Hydrological Processes, Volume 36, Issue 10

Abstract Ecohydrological investigations commonly use the stable isotopes of water (hydrogen and oxygen) as conservative ecosystem tracers. This approach requires accessing and analysing water from plant and soil matrices. Generally, there are six steps involved to retrieve hydrogen and oxygen isotope values from these matrices: (1) sampling, (2) sample storage and transport, (3) extraction, (4) pre‐analysis processing, (5) isotopic analysis, and (6) post‐processing and correction. At each step, cumulative errors can be introduced which sum to non‐trivial magnitudes. These can impact subsequent interpretations about water cycling and partitioning through the soil–plant‐atmosphere continuum. At each of these steps, there are multiple possible options to select from resulting in tens of thousands of possible combinations used by researchers to go from plant and soil samples to isotopic data. In a newly emerging field, so many options can create interpretive confusion and major issues with data comparability. This points to the need for development of shared standardized approaches. Here we critically examine the state of the process chain, reflecting on the issues associated with each step, and provide suggestions to move our community towards standardization. Assessing this shared ‘process chain’ will help us see the problem in its entirety and facilitate community action towards agreed upon standardized approaches.

2021

DOI bib
The Maimai <scp>M8</scp> experimental catchment database: Forty years of process‐based research on steep, wet hillslopes
Jeffrey J. McDonnell, Chris Gabrielli, Ali Ameli, Jagath Ekanayake, Fabrizio Fenicia, Jim Freer, C. B. Graham, B. L. McGlynn, Uwe Morgenstern, Alain Pietroniro, Takahiro Sayama, Jan Seibert, M. K. Stewart, Kellie B. Vaché, Markus Weiler, Ross Woods, Jeffrey J. McDonnell, Chris Gabrielli, Ali Ameli, Jagath Ekanayake, Fabrizio Fenicia, Jim Freer, C. B. Graham, B. L. McGlynn, Uwe Morgenstern, Alain Pietroniro, Takahiro Sayama, Jan Seibert, M. K. Stewart, Kellie B. Vaché, Markus Weiler, Ross Woods
Hydrological Processes, Volume 35, Issue 5

Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada School of Geosciences, University of Birmingham, Birmingham, UK Dept of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada Landcare Research, Lincoln, New Zealand Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada School of Geographical Sciences, University of Bristol, Bristol, UK Cabot Institute, University of Bristol, Bristol, UK Hetch Hetchy Power, San Francisco, California, USA Division of Earth and Ocean Sciences, Nicolas School of the Environment, Duke University, Durham, North Carolina, USA GNS Science, Lower Hutt, New Zealand Department of Civil Engineering, Univeristy of Calgary, Calgary, Alberta, Canada Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan Department of Geography, University of Zurich, Zurich, Switzerland Dept of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA Faculty of Environment & Natural Resources, University of Freiburg, Freiburg, Germany Faculty of Engineering, University of Bristol, Bristol, UK

DOI bib
The Maimai <scp>M8</scp> experimental catchment database: Forty years of process‐based research on steep, wet hillslopes
Jeffrey J. McDonnell, Chris Gabrielli, Ali Ameli, Jagath Ekanayake, Fabrizio Fenicia, Jim Freer, C. B. Graham, B. L. McGlynn, Uwe Morgenstern, Alain Pietroniro, Takahiro Sayama, Jan Seibert, M. K. Stewart, Kellie B. Vaché, Markus Weiler, Ross Woods, Jeffrey J. McDonnell, Chris Gabrielli, Ali Ameli, Jagath Ekanayake, Fabrizio Fenicia, Jim Freer, C. B. Graham, B. L. McGlynn, Uwe Morgenstern, Alain Pietroniro, Takahiro Sayama, Jan Seibert, M. K. Stewart, Kellie B. Vaché, Markus Weiler, Ross Woods
Hydrological Processes, Volume 35, Issue 5

Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada School of Geosciences, University of Birmingham, Birmingham, UK Dept of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada Landcare Research, Lincoln, New Zealand Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada School of Geographical Sciences, University of Bristol, Bristol, UK Cabot Institute, University of Bristol, Bristol, UK Hetch Hetchy Power, San Francisco, California, USA Division of Earth and Ocean Sciences, Nicolas School of the Environment, Duke University, Durham, North Carolina, USA GNS Science, Lower Hutt, New Zealand Department of Civil Engineering, Univeristy of Calgary, Calgary, Alberta, Canada Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan Department of Geography, University of Zurich, Zurich, Switzerland Dept of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA Faculty of Environment & Natural Resources, University of Freiburg, Freiburg, Germany Faculty of Engineering, University of Bristol, Bristol, UK

DOI bib
No evidence of isotopic fractionation in olive trees (<i>Olea europaea</i>): a stable isotope tracing experiment
Anam Amin, Giulia Zuecco, Chiara Marchina, Michael Engel, Daniele Penna, Jeffrey J. McDonnell, Marco Borga, Anam Amin, Giulia Zuecco, Chiara Marchina, Michael Engel, Daniele Penna, Jeffrey J. McDonnell, Marco Borga
Hydrological Sciences Journal, Volume 66, Issue 16

Plant transpiration is the dominant water flux in the global terrestrial water balance and a key process in the hydrological sciences. Stable isotopes have contributed greatly to this understanding...

DOI bib
No evidence of isotopic fractionation in olive trees (<i>Olea europaea</i>): a stable isotope tracing experiment
Anam Amin, Giulia Zuecco, Chiara Marchina, Michael Engel, Daniele Penna, Jeffrey J. McDonnell, Marco Borga, Anam Amin, Giulia Zuecco, Chiara Marchina, Michael Engel, Daniele Penna, Jeffrey J. McDonnell, Marco Borga
Hydrological Sciences Journal, Volume 66, Issue 16

Plant transpiration is the dominant water flux in the global terrestrial water balance and a key process in the hydrological sciences. Stable isotopes have contributed greatly to this understanding...

DOI bib
On the use of leaf water to determine plant water source: A proof of concept
Paolo Benettin, Magali F. Nehemy, Lucas A. Cernusak, Ansgar Kahmen, Jeffrey J. McDonnell, Paolo Benettin, Magali F. Nehemy, Lucas A. Cernusak, Ansgar Kahmen, Jeffrey J. McDonnell
Hydrological Processes, Volume 35, Issue 3

Source water apportionment studies using the dual isotopes of oxygen and hydrogen have revolutionized our understanding of ecohydrology. But despite these developments—mostly over the past decade—many technical problems still exist in terms of linking xylem water to its soil water and groundwater sources. This is mainly due to sampling issues and possible fractionation of xylem water. Here we explore whether or not leaf water alone can be used to quantify the blend of rainfall event inputs from which the leaf water originates. Leaf water has historically been avoided in plant water uptake studies due to the extreme fractionation processes at the leaf surface. In our proof of concept work we embrace those processes and use the well-known Craig and Gordon model to map leaf water back to its individual precipitation event water sources. We also employ a Bayesian uncertainty estimation approach to quantify source apportionment uncertainties. We show this using a controlled, vegetated lysimeter experiment where we were able to use leaf water to correctly identify the mean seasonal rainfall that was taken up by the plant, with an uncertainty typically within ±1‰ for δ18O. While not appropriate for all source water studies, this work shows that leaf water isotope composition may provide a new, relatively un-intrusive method for addressing questions about the plant water source.

DOI bib
On the use of leaf water to determine plant water source: A proof of concept
Paolo Benettin, Magali F. Nehemy, Lucas A. Cernusak, Ansgar Kahmen, Jeffrey J. McDonnell, Paolo Benettin, Magali F. Nehemy, Lucas A. Cernusak, Ansgar Kahmen, Jeffrey J. McDonnell
Hydrological Processes, Volume 35, Issue 3

Source water apportionment studies using the dual isotopes of oxygen and hydrogen have revolutionized our understanding of ecohydrology. But despite these developments—mostly over the past decade—many technical problems still exist in terms of linking xylem water to its soil water and groundwater sources. This is mainly due to sampling issues and possible fractionation of xylem water. Here we explore whether or not leaf water alone can be used to quantify the blend of rainfall event inputs from which the leaf water originates. Leaf water has historically been avoided in plant water uptake studies due to the extreme fractionation processes at the leaf surface. In our proof of concept work we embrace those processes and use the well-known Craig and Gordon model to map leaf water back to its individual precipitation event water sources. We also employ a Bayesian uncertainty estimation approach to quantify source apportionment uncertainties. We show this using a controlled, vegetated lysimeter experiment where we were able to use leaf water to correctly identify the mean seasonal rainfall that was taken up by the plant, with an uncertainty typically within ±1‰ for δ18O. While not appropriate for all source water studies, this work shows that leaf water isotope composition may provide a new, relatively un-intrusive method for addressing questions about the plant water source.

DOI bib
Tracing and Closing the Water Balance in a Vegetated Lysimeter
Paolo Benettin, Magali F. Nehemy, Mitra Asadollahi, Dyan Pratt, Michaël Bensimon, Jeffrey J. McDonnell, Andrea Rinaldo, Paolo Benettin, Magali F. Nehemy, Mitra Asadollahi, Dyan Pratt, Michaël Bensimon, Jeffrey J. McDonnell, Andrea Rinaldo
Water Resources Research, Volume 57, Issue 4

Closure of the soil water balance is fundamental to ecohydrology. But closing the soil water balance with hydrometric information offers no insight into the age distribution of water transiting the soil column via deep drainage or the combination of soil evaporation and transpiration. This is a major challenge in our discipline currently; tracing the water balance is the needed next step. Here we report results from a controlled tracer experiment aimed at both closing the soil water balance and tracing its individual components. This was carried out on a 2.5 m3 lysimeter planted with a willow tree. We applied 25 mm of isotopically enriched water on top of the lysimeter and tracked it for 43 days through the soil water, the bottom drainage, and the plant xylem. We then destructively sampled the system to quantify the remaining isotope mass. More than 900 water samples were collected for stable isotope analysis to trace the labeled irrigation. We then used these data to quantify when and where the labeled irrigation became the source of plant uptake or deep percolation. Evapotranspiration dominated the water balance outflow (88%). Tracing the transpiration flux showed further that transpiration was soil water that had fallen as precipitation 1–2 months prior. The tracer breakthrough in transpiration was complex and different from the breakthrough curves observed within the soil or in the bottom drainage. Given the lack of direct experimental data on travel time to transpiration, these results provide a first balance closure where all the relevant outflows are traced.

DOI bib
Tracing and Closing the Water Balance in a Vegetated Lysimeter
Paolo Benettin, Magali F. Nehemy, Mitra Asadollahi, Dyan Pratt, Michaël Bensimon, Jeffrey J. McDonnell, Andrea Rinaldo, Paolo Benettin, Magali F. Nehemy, Mitra Asadollahi, Dyan Pratt, Michaël Bensimon, Jeffrey J. McDonnell, Andrea Rinaldo
Water Resources Research, Volume 57, Issue 4

Closure of the soil water balance is fundamental to ecohydrology. But closing the soil water balance with hydrometric information offers no insight into the age distribution of water transiting the soil column via deep drainage or the combination of soil evaporation and transpiration. This is a major challenge in our discipline currently; tracing the water balance is the needed next step. Here we report results from a controlled tracer experiment aimed at both closing the soil water balance and tracing its individual components. This was carried out on a 2.5 m3 lysimeter planted with a willow tree. We applied 25 mm of isotopically enriched water on top of the lysimeter and tracked it for 43 days through the soil water, the bottom drainage, and the plant xylem. We then destructively sampled the system to quantify the remaining isotope mass. More than 900 water samples were collected for stable isotope analysis to trace the labeled irrigation. We then used these data to quantify when and where the labeled irrigation became the source of plant uptake or deep percolation. Evapotranspiration dominated the water balance outflow (88%). Tracing the transpiration flux showed further that transpiration was soil water that had fallen as precipitation 1–2 months prior. The tracer breakthrough in transpiration was complex and different from the breakthrough curves observed within the soil or in the bottom drainage. Given the lack of direct experimental data on travel time to transpiration, these results provide a first balance closure where all the relevant outflows are traced.

DOI bib
Organic contamination detection for isotopic analysis of water by laser spectroscopy
Cody Millar, Kim Janzen, Magali F. Nehemy, Geoff Koehler, Pedro Hervé‐Fernández, Jeffrey J. McDonnell, Cody Millar, Kim Janzen, Magali F. Nehemy, Geoff Koehler, Pedro Hervé‐Fernández, Jeffrey J. McDonnell
Rapid Communications in Mass Spectrometry, Volume 35, Issue 15

Rationale Hydrogen and oxygen stable isotope ratios (δ2H, δ17O, and δ18O values) are commonly used tracers of water. These ratios can be measured by isotope ratio infrared spectroscopy (IRIS). However, IRIS approaches are prone to errors induced by organic compounds present in plant, soil, and natural water samples. A novel approach using 17O-excess values has shown promise for flagging spectrally contaminated plant samples during IRIS analysis. A systematic assessment of this flagging system is needed to prove it useful. Methods Errors induced by methanol and ethanol water mixtures on measured IRIS and isotope ratio mass spectrometry (IRMS) results were evaluated. For IRIS analyses both liquid- and vapour-mode (via direct vapour equilibration) methods are used. The δ2H, δ17O, and δ18O values were measured and compared with known reference values to determine the errors induced by methanol and ethanol contamination. In addition, the 17O-excess contamination detection approach was tested. This is a post-processing detection tool for both liquid and vapour IRIS triple-isotope analyses, utilizing calculated 17O-excess values to flag contaminated samples. Results Organic contamination induced significant errors in IRIS results, not seen in IRMS results. Methanol caused larger errors than ethanol. Results from vapour-IRIS analyses had larger errors than those from liquid-IRIS analyses. The 17O-excess approach identified methanol driven error in liquid- and vapour-mode IRIS samples at levels where isotope results became unacceptably erroneous. For ethanol contaminated samples, a mix of erroneous and correct flagging occurred with the 17O-excess method. Our results indicate that methanol is the more problematic contaminant for data corruption. The 17O-excess method was therefore useful for data quality control. Conclusions Organic contamination caused significant errors in IRIS stable isotope results. These errors were larger during vapour analyses than during liquid IRIS analyses, and larger for methanol than ethanol contamination. The 17O-excess method is highly sensitive for detecting narrowband (methanol) contamination error in vapour and liquid analysis modes in IRIS.

DOI bib
Organic contamination detection for isotopic analysis of water by laser spectroscopy
Cody Millar, Kim Janzen, Magali F. Nehemy, Geoff Koehler, Pedro Hervé‐Fernández, Jeffrey J. McDonnell, Cody Millar, Kim Janzen, Magali F. Nehemy, Geoff Koehler, Pedro Hervé‐Fernández, Jeffrey J. McDonnell
Rapid Communications in Mass Spectrometry, Volume 35, Issue 15

Rationale Hydrogen and oxygen stable isotope ratios (δ2H, δ17O, and δ18O values) are commonly used tracers of water. These ratios can be measured by isotope ratio infrared spectroscopy (IRIS). However, IRIS approaches are prone to errors induced by organic compounds present in plant, soil, and natural water samples. A novel approach using 17O-excess values has shown promise for flagging spectrally contaminated plant samples during IRIS analysis. A systematic assessment of this flagging system is needed to prove it useful. Methods Errors induced by methanol and ethanol water mixtures on measured IRIS and isotope ratio mass spectrometry (IRMS) results were evaluated. For IRIS analyses both liquid- and vapour-mode (via direct vapour equilibration) methods are used. The δ2H, δ17O, and δ18O values were measured and compared with known reference values to determine the errors induced by methanol and ethanol contamination. In addition, the 17O-excess contamination detection approach was tested. This is a post-processing detection tool for both liquid and vapour IRIS triple-isotope analyses, utilizing calculated 17O-excess values to flag contaminated samples. Results Organic contamination induced significant errors in IRIS results, not seen in IRMS results. Methanol caused larger errors than ethanol. Results from vapour-IRIS analyses had larger errors than those from liquid-IRIS analyses. The 17O-excess approach identified methanol driven error in liquid- and vapour-mode IRIS samples at levels where isotope results became unacceptably erroneous. For ethanol contaminated samples, a mix of erroneous and correct flagging occurred with the 17O-excess method. Our results indicate that methanol is the more problematic contaminant for data corruption. The 17O-excess method was therefore useful for data quality control. Conclusions Organic contamination caused significant errors in IRIS stable isotope results. These errors were larger during vapour analyses than during liquid IRIS analyses, and larger for methanol than ethanol contamination. The 17O-excess method is highly sensitive for detecting narrowband (methanol) contamination error in vapour and liquid analysis modes in IRIS.

DOI bib
Tracers reveal limited influence of plantation forests on surface runoff in a UK natural flood management catchment
Leo Peskett, Kate V. Heal, Alan MacDonald, Andrew Black, Jeffrey J. McDonnell, Leo Peskett, Kate V. Heal, Alan MacDonald, Andrew Black, Jeffrey J. McDonnell
Journal of Hydrology: Regional Studies, Volume 36

• Natural tracers reveal runoff sources in UK natural flood management catchment. • Water already stored in the catchments dominated runoff in high flow events. • Plantation forest cover reduced the fraction of rapid rainfall runoff. • Soils and geology dominated forest cover as control on rapid rainfall runoff fraction. • Differences in sources were greater between events than between catchments. United Kingdom (UK). Natural flood management (NFM) schemes are increasingly prominent in the UK. Studies of NFM have not yet used natural tracers at catchment scale to investigate how interventions influence partitioning during storms between surface rainfall runoff and water already stored in catchments. Here we investigate how catchment properties, particularly plantation forestry, influence surface storm rainfall runoff. We used hydrograph separation based on hydrogen and oxygen isotopes ( 2 H, 18 O) and acid neutralising capacity from high flow events to compare three headwater catchments (2.4-3.1 km 2 ) with differences in plantation forest cover ( Picea sitchensis: 94%, 41%, 1%) within a major UK NFM pilot, typical of the UK uplands. Plantation forest cover reduced the total storm rainfall runoff fraction during all events (by up to 11%) when comparing two paired catchments with similar soils, geology and topography but ∼50% difference in forest cover. However, comparison with the third catchment, with negligible forest cover but different characteristics, suggests that soils and geology were dominant controls on storm rainfall runoff fraction. Furthermore, differences between events were greater than differences between catchments. These findings suggest that while plantation forest cover may influence storm rainfall runoff fractions, it is not a dominant control in temperate upland UK catchments, especially for larger events. Soils and geology may exert greater influence, with implications for planning NFM.

DOI bib
Tracers reveal limited influence of plantation forests on surface runoff in a UK natural flood management catchment
Leo Peskett, Kate V. Heal, Alan MacDonald, Andrew Black, Jeffrey J. McDonnell, Leo Peskett, Kate V. Heal, Alan MacDonald, Andrew Black, Jeffrey J. McDonnell
Journal of Hydrology: Regional Studies, Volume 36

• Natural tracers reveal runoff sources in UK natural flood management catchment. • Water already stored in the catchments dominated runoff in high flow events. • Plantation forest cover reduced the fraction of rapid rainfall runoff. • Soils and geology dominated forest cover as control on rapid rainfall runoff fraction. • Differences in sources were greater between events than between catchments. United Kingdom (UK). Natural flood management (NFM) schemes are increasingly prominent in the UK. Studies of NFM have not yet used natural tracers at catchment scale to investigate how interventions influence partitioning during storms between surface rainfall runoff and water already stored in catchments. Here we investigate how catchment properties, particularly plantation forestry, influence surface storm rainfall runoff. We used hydrograph separation based on hydrogen and oxygen isotopes ( 2 H, 18 O) and acid neutralising capacity from high flow events to compare three headwater catchments (2.4-3.1 km 2 ) with differences in plantation forest cover ( Picea sitchensis: 94%, 41%, 1%) within a major UK NFM pilot, typical of the UK uplands. Plantation forest cover reduced the total storm rainfall runoff fraction during all events (by up to 11%) when comparing two paired catchments with similar soils, geology and topography but ∼50% difference in forest cover. However, comparison with the third catchment, with negligible forest cover but different characteristics, suggests that soils and geology were dominant controls on storm rainfall runoff fraction. Furthermore, differences between events were greater than differences between catchments. These findings suggest that while plantation forest cover may influence storm rainfall runoff fractions, it is not a dominant control in temperate upland UK catchments, especially for larger events. Soils and geology may exert greater influence, with implications for planning NFM.

DOI bib
Tropical forest water source patterns revealed by stable isotopes: A preliminary analysis of 46 neighboring species
Md. Shawkat Islam Sohel, Adriana Vega Grau, Jeffrey J. McDonnell, John Herbohn, Md. Shawkat Islam Sohel, Adriana Vega Grau, Jeffrey J. McDonnell, John Herbohn
Forest Ecology and Management, Volume 494

• Stable isotope tracing of plant water use can illuminate plant water sources. • Xylem water isotope values showed strong sorting and niche segregation. • The majority of the observed species relied on 0.0–0.2 m depth soil water. • Tropical forest water uptake depth is largely driven by tree functional traits. Stable isotope tracing of plant water use can illuminate plant water sources. But to date, the number of species tested at any given site has been minimal. Here, we sample 46 tropical hardwood tree species in a 0.32 ha plot with uniform soils. Soil water was characterized at 6 depths at 0.2 m intervals down to 1 m and showed simple and predictable depth patterns of δ 2 H and δ 18 O, and simple and spatially uniform isotope composition at each depth. Nevertheless, tree xylem water δ 2 H and δ 18 O showed remarkable variation covering the full range of soil composition, suggesting strong sorting and niche segregation across the small plot. Wood density, tree size and mean basal area increment together explained approximately 55% of the variance of xylem water isotope composition through principal component analysis. A Bayesian mixing model was applied to the data and showed that sampled trees were either sourcing their water from very shallow or deep soil layers, with very little contribution from the middle portion of the soil profile. The majority of the observed species relied on 0.0–0.2 m depth soil water. This layer contributed approximately 75% of the xylem water which was significantly higher than the contributions from all other depths. The contribution from shallow soil was highest for trees with high wood density, slow-growing trees and small-sized trees. Our work suggests that stable isotope tracers may aid a better understanding of tropical forest water uptake depths and their relation to tree functional traits and potential hydrological niche segregation among co-occurring tropical species.

DOI bib
Tropical forest water source patterns revealed by stable isotopes: A preliminary analysis of 46 neighboring species
Md. Shawkat Islam Sohel, Adriana Vega Grau, Jeffrey J. McDonnell, John Herbohn, Md. Shawkat Islam Sohel, Adriana Vega Grau, Jeffrey J. McDonnell, John Herbohn
Forest Ecology and Management, Volume 494

• Stable isotope tracing of plant water use can illuminate plant water sources. • Xylem water isotope values showed strong sorting and niche segregation. • The majority of the observed species relied on 0.0–0.2 m depth soil water. • Tropical forest water uptake depth is largely driven by tree functional traits. Stable isotope tracing of plant water use can illuminate plant water sources. But to date, the number of species tested at any given site has been minimal. Here, we sample 46 tropical hardwood tree species in a 0.32 ha plot with uniform soils. Soil water was characterized at 6 depths at 0.2 m intervals down to 1 m and showed simple and predictable depth patterns of δ 2 H and δ 18 O, and simple and spatially uniform isotope composition at each depth. Nevertheless, tree xylem water δ 2 H and δ 18 O showed remarkable variation covering the full range of soil composition, suggesting strong sorting and niche segregation across the small plot. Wood density, tree size and mean basal area increment together explained approximately 55% of the variance of xylem water isotope composition through principal component analysis. A Bayesian mixing model was applied to the data and showed that sampled trees were either sourcing their water from very shallow or deep soil layers, with very little contribution from the middle portion of the soil profile. The majority of the observed species relied on 0.0–0.2 m depth soil water. This layer contributed approximately 75% of the xylem water which was significantly higher than the contributions from all other depths. The contribution from shallow soil was highest for trees with high wood density, slow-growing trees and small-sized trees. Our work suggests that stable isotope tracers may aid a better understanding of tropical forest water uptake depths and their relation to tree functional traits and potential hydrological niche segregation among co-occurring tropical species.

DOI bib
Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees
Adriana Vega Grau, Jeffrey J. McDonnell, Susanne Schmidt, Mark Annandale, John Herbohn, Adriana Vega Grau, Jeffrey J. McDonnell, Susanne Schmidt, Mark Annandale, John Herbohn
Science of The Total Environment, Volume 795

Studies of plant water sources generally assume that xylem water integrates the isotopic composition (δ 2 H and δ 18 O) of water sources and does not fractionate during uptake or transport along the transpiration pathway. However, woody xerophytes, halophytes, and trees in mesic environments can show isotopic fractionation from source waters. Isotopic fractionation and variation in isotope composition can affect the interpretation of tree water sources, but most studies to date have been greenhouse experiments. Here we present a field-based forensic analysis of xylem water isotope composition for 12 Eucalyptus tetrodonta and Corymbia nesophila trees . We used a 25-tonne excavator to access materials from the trees' maximum rooting depth of 3 m to their highest canopies at 38 m. Substantial within-tree variation occurred in δ 2 H (−91.1‰ to −35.7‰ E. tetrodonta ; −88.8‰ to −24.5‰ C. nesophila ) and δ 18 O (−12.3‰ to −5.0‰ E. tetrodonta ; −10.9‰ to −0.3‰ C. nesophila ), with different root-to-branch isotope patterns in each species. Soil water δ 2 H and δ 18 O dual isotope slopes (7.26 E. tetrodonta , 6.66 C. nesophila ) were closest to the Local Meteoric Water Line (8.4). The dual isotope slopes of the trees decreased progressively from roots (6.45 E. tetrodonta , 6.07 C. nesophila ), to stems (4.61 E. tetrodonta , 5.97 C. nesophila ) and branches (4.68 E. tetrodonta , 5.67 C. nesophila ), indicative of fractionation along the xylem stream. Roots of both species were more enriched in 2 H and 18 O than soil water at all sampled depths. Bayesian mixing model analysis showed that estimated proportions of water sourced from different depths reflected the contrasting root systems of these species. Our study adds evidence of isotopic fractionation from water uptake and along the transpiration stream in mature trees in monsoonal environments, affecting the interpretation of water sources. We discuss the findings with view of interpreting aboveground xylem water isotopic composition, incorporating knowledge of root systems. • Isotopic fractionation of xylem water may affect plant water source identification. • We analysed xylem δ 2 H and δ 18 O from roots to branches in mature trees in a savanna. • Fractionation increased from below- to aboveground xylem in the dual isotope space • Root structure assessment helped clarify aboveground interpretation of water use. • Future studies should consider xylem water fractionation and include plant traits.

DOI bib
Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees
Adriana Vega Grau, Jeffrey J. McDonnell, Susanne Schmidt, Mark Annandale, John Herbohn, Adriana Vega Grau, Jeffrey J. McDonnell, Susanne Schmidt, Mark Annandale, John Herbohn
Science of The Total Environment, Volume 795

Studies of plant water sources generally assume that xylem water integrates the isotopic composition (δ 2 H and δ 18 O) of water sources and does not fractionate during uptake or transport along the transpiration pathway. However, woody xerophytes, halophytes, and trees in mesic environments can show isotopic fractionation from source waters. Isotopic fractionation and variation in isotope composition can affect the interpretation of tree water sources, but most studies to date have been greenhouse experiments. Here we present a field-based forensic analysis of xylem water isotope composition for 12 Eucalyptus tetrodonta and Corymbia nesophila trees . We used a 25-tonne excavator to access materials from the trees' maximum rooting depth of 3 m to their highest canopies at 38 m. Substantial within-tree variation occurred in δ 2 H (−91.1‰ to −35.7‰ E. tetrodonta ; −88.8‰ to −24.5‰ C. nesophila ) and δ 18 O (−12.3‰ to −5.0‰ E. tetrodonta ; −10.9‰ to −0.3‰ C. nesophila ), with different root-to-branch isotope patterns in each species. Soil water δ 2 H and δ 18 O dual isotope slopes (7.26 E. tetrodonta , 6.66 C. nesophila ) were closest to the Local Meteoric Water Line (8.4). The dual isotope slopes of the trees decreased progressively from roots (6.45 E. tetrodonta , 6.07 C. nesophila ), to stems (4.61 E. tetrodonta , 5.97 C. nesophila ) and branches (4.68 E. tetrodonta , 5.67 C. nesophila ), indicative of fractionation along the xylem stream. Roots of both species were more enriched in 2 H and 18 O than soil water at all sampled depths. Bayesian mixing model analysis showed that estimated proportions of water sourced from different depths reflected the contrasting root systems of these species. Our study adds evidence of isotopic fractionation from water uptake and along the transpiration stream in mature trees in monsoonal environments, affecting the interpretation of water sources. We discuss the findings with view of interpreting aboveground xylem water isotopic composition, incorporating knowledge of root systems. • Isotopic fractionation of xylem water may affect plant water source identification. • We analysed xylem δ 2 H and δ 18 O from roots to branches in mature trees in a savanna. • Fractionation increased from below- to aboveground xylem in the dual isotope space • Root structure assessment helped clarify aboveground interpretation of water use. • Future studies should consider xylem water fractionation and include plant traits.

DOI bib
Fill‐and‐Spill: A Process Description of Runoff Generation at the Scale of the Beholder
Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman, Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman
Water Resources Research, Volume 57, Issue 5

Descriptions of runoff generation processes continue to grow, helping to reveal complexities and hydrologic behavior across a wide range of environments and scales. But to date, there has been little grouping of these process facts. Here, we discuss how the “fill‐and‐spill” concept can provide a framework to group event‐based runoff generation processes. The fill‐and‐spill concept describes where vertical and lateral additions of water to a landscape unit are placed into storage (the fill)—and only when this storage reaches a critical level (the spill), and other storages are filled and become connected, does a previously infeasible (but subsequently important) outflow pathway become activated. We show that fill‐and‐spill can be observed at a range of scales and propose that future fieldwork should first define the scale of interest and then evaluate what is filling‐and‐spilling at that scale. Such an approach may be helpful for those instrumenting and modeling new hillslopes or catchments because it provides a structured way to develop perceptual models for runoff generation and to group behaviors at different sites and scales.

DOI bib
Fill‐and‐Spill: A Process Description of Runoff Generation at the Scale of the Beholder
Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman, Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman
Water Resources Research, Volume 57, Issue 5

Descriptions of runoff generation processes continue to grow, helping to reveal complexities and hydrologic behavior across a wide range of environments and scales. But to date, there has been little grouping of these process facts. Here, we discuss how the “fill‐and‐spill” concept can provide a framework to group event‐based runoff generation processes. The fill‐and‐spill concept describes where vertical and lateral additions of water to a landscape unit are placed into storage (the fill)—and only when this storage reaches a critical level (the spill), and other storages are filled and become connected, does a previously infeasible (but subsequently important) outflow pathway become activated. We show that fill‐and‐spill can be observed at a range of scales and propose that future fieldwork should first define the scale of interest and then evaluate what is filling‐and‐spilling at that scale. Such an approach may be helpful for those instrumenting and modeling new hillslopes or catchments because it provides a structured way to develop perceptual models for runoff generation and to group behaviors at different sites and scales.

DOI bib
Crustal Groundwater Volumes Greater Than Previously Thought
Grant Ferguson, Jennifer C. McIntosh, Oliver Warr, Barbara Sherwood Lollar, C. J. Ballentine, J. S. Famiglietti, Ji‐Hyun Kim, J. R. Michalski, John F. Mustard, Jesse Tarnas, Jeffrey J. McDonnell, Grant Ferguson, Jennifer C. McIntosh, Oliver Warr, Barbara Sherwood Lollar, C. J. Ballentine, J. S. Famiglietti, Ji‐Hyun Kim, J. R. Michalski, John F. Mustard, Jesse Tarnas, Jeffrey J. McDonnell
Geophysical Research Letters, Volume 48, Issue 16

Global groundwater volumes in the upper 2 km of the Earth's continental crust—critical for water security—are well estimated. Beyond these depths, a vast body of largely saline and non-potable groundwater exists down to at least 10 km—a volume that has not yet been quantified reliably at the global scale. Here, we estimate the amount of groundwater present in the upper 10 km of the Earth's continental crust by examining the distribution of sedimentary and crystalline rocks with depth and applying porosity-depth relationships. We demonstrate that groundwater in the 2–10 km zone (what we call “deep groundwater”) has a volume comparable to that of groundwater in the upper 2 km of the Earth's crust. These new estimates make groundwater the largest continental reservoir of water, ahead of ice sheets, provide a basis to quantify geochemical cycles, and constrain the potential for large-scale isolation of waste fluids.

DOI bib
Crustal Groundwater Volumes Greater Than Previously Thought
Grant Ferguson, Jennifer C. McIntosh, Oliver Warr, Barbara Sherwood Lollar, C. J. Ballentine, J. S. Famiglietti, Ji‐Hyun Kim, J. R. Michalski, John F. Mustard, Jesse Tarnas, Jeffrey J. McDonnell, Grant Ferguson, Jennifer C. McIntosh, Oliver Warr, Barbara Sherwood Lollar, C. J. Ballentine, J. S. Famiglietti, Ji‐Hyun Kim, J. R. Michalski, John F. Mustard, Jesse Tarnas, Jeffrey J. McDonnell
Geophysical Research Letters, Volume 48, Issue 16

Global groundwater volumes in the upper 2 km of the Earth's continental crust—critical for water security—are well estimated. Beyond these depths, a vast body of largely saline and non-potable groundwater exists down to at least 10 km—a volume that has not yet been quantified reliably at the global scale. Here, we estimate the amount of groundwater present in the upper 10 km of the Earth's continental crust by examining the distribution of sedimentary and crystalline rocks with depth and applying porosity-depth relationships. We demonstrate that groundwater in the 2–10 km zone (what we call “deep groundwater”) has a volume comparable to that of groundwater in the upper 2 km of the Earth's crust. These new estimates make groundwater the largest continental reservoir of water, ahead of ice sheets, provide a basis to quantify geochemical cycles, and constrain the potential for large-scale isolation of waste fluids.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro, C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro, C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

DOI bib
The evolving perceptual model of streamflow generation at the Panola Mountain Research Watershed
Brent T. Aulenbach, Richard Hooper, Ilja van Meerveld, Douglas A. Burns, Jim Freer, James B. Shanley, Thomas G. Huntington, Jeffrey J. McDonnell, Norman E. Peters, Brent T. Aulenbach, Richard Hooper, Ilja van Meerveld, Douglas A. Burns, Jim Freer, James B. Shanley, Thomas G. Huntington, Jeffrey J. McDonnell, Norman E. Peters
Hydrological Processes, Volume 35, Issue 4

The Panola Mountain Research Watershed (PMRW) is a 41-hectare forested catchment within the Piedmont Province of the Southeastern United States. Observations, experimentation, and numerical modelling have been conducted at Panola over the past 35 years. But to date, these studies have not been fully incorporated into a more comprehensive synthesis. Here we describe the evolving perceptual understanding of streamflow generation mechanisms at the PMRW. We show how the long-term study has enabled insights that were initially unforeseen but are also unachievable in short-term studies. In particular, we discuss how the accumulation of field evidence, detailed site characterization, and modelling enabled a priori hypotheses to be formed, later rejected, and then further refined through repeated field campaigns. The extensive characterization of the soil and bedrock provided robust process insights not otherwise achievable from hydrometric measurements and numerical modelling alone. We focus on two major aspects of streamflow generation: the role of hillslopes (and their connection to the riparian zone) and the role of catchment storage in controlling fluxes and transit times of water in the catchment. Finally, we present location-independent hypotheses based on our findings at PMRW and suggest ways to assess the representativeness of PMRW in the broader context of headwater watersheds.

DOI bib
The evolving perceptual model of streamflow generation at the Panola Mountain Research Watershed
Brent T. Aulenbach, Richard Hooper, Ilja van Meerveld, Douglas A. Burns, Jim Freer, James B. Shanley, Thomas G. Huntington, Jeffrey J. McDonnell, Norman E. Peters, Brent T. Aulenbach, Richard Hooper, Ilja van Meerveld, Douglas A. Burns, Jim Freer, James B. Shanley, Thomas G. Huntington, Jeffrey J. McDonnell, Norman E. Peters
Hydrological Processes, Volume 35, Issue 4

The Panola Mountain Research Watershed (PMRW) is a 41-hectare forested catchment within the Piedmont Province of the Southeastern United States. Observations, experimentation, and numerical modelling have been conducted at Panola over the past 35 years. But to date, these studies have not been fully incorporated into a more comprehensive synthesis. Here we describe the evolving perceptual understanding of streamflow generation mechanisms at the PMRW. We show how the long-term study has enabled insights that were initially unforeseen but are also unachievable in short-term studies. In particular, we discuss how the accumulation of field evidence, detailed site characterization, and modelling enabled a priori hypotheses to be formed, later rejected, and then further refined through repeated field campaigns. The extensive characterization of the soil and bedrock provided robust process insights not otherwise achievable from hydrometric measurements and numerical modelling alone. We focus on two major aspects of streamflow generation: the role of hillslopes (and their connection to the riparian zone) and the role of catchment storage in controlling fluxes and transit times of water in the catchment. Finally, we present location-independent hypotheses based on our findings at PMRW and suggest ways to assess the representativeness of PMRW in the broader context of headwater watersheds.

2020

DOI bib
Tree water deficit and dynamic source water partitioning
Magali F. Nehemy, Paolo Benettin, Mitra Asadollahi, Dyan Pratt, Andrea Rinaldo, Jeffrey J. McDonnell
Hydrological Processes, Volume 35, Issue 1

The stable isotopes of hydrogen and oxygen (δ2H and δ18O, respectively) have been widely used to investigate tree water source partitioning. These tracers have shed new light on patterns of tree water use in time and space. However, there are several limiting factors to this methodology (e.g., the difficult assessment of isotope fractionation in trees, and the labor‐intensity associated with the collection of significant sample sizes) and the use of isotopes alone has not been enough to provide a mechanistic understanding of source water partitioning. Here, we combine isotope data in xylem and soil water with measurements of tree's physiological information including tree water deficit (TWD), fine root distribution, and soil matric potential, to investigate the mechanism driving tree water source partitioning. We used a 2 m3 lysimeter with willow trees (Salix viminalis) planted within, to conduct a high spatial–temporal resolution experiment. TWD provided an integrated response of plant water status to water supply and demand. The combined isotopic and TWD measurement showed that short‐term variation (within days) in source water partitioning is determined mainly by plant hydraulic response to changes in soil matric potential. We observed changes in the relationship between soil matric potential and TWD that are matched by shifts in source water partitioning. Our results show that tree water use is a dynamic process on the time scale of days. These findings demonstrate tree's plasticity to water supply over days can be identified with high‐resolution measurements of plant water status. Our results further support that root distribution alone is not an indicator of water uptake dynamics. Overall, we show that combining physiological measurements with traditional isotope tracing can reveal mechanistic insights into plant responses to changing environmental conditions.

DOI bib
Where Is the Bottom of a Watershed?
Laura E. Condon, K. H. Markovich, Christa Kelleher, Jeffrey J. McDonnell, Grant Ferguson, Jennifer C. McIntosh
Water Resources Research, Volume 56, Issue 3

Watersheds have served as one of our most basic units of organization in hydrology for over 300 years (Dooge, 1988, https://doi.org/10.1080/02626668809491223; McDonnell, 2017, https://doi.org/10.1038/ngeo2964; Perrault, 1674, https://www.abebooks.com/first‐edition/lorigine‐fontaines‐Perrault‐Pierre‐Petit‐Imprimeur/21599664536/bd). With growing interest in groundwater‐surface water interactions and subsurface flow paths, hydrologists are increasingly looking deeper. But the dialog between surface water hydrologists and groundwater hydrologists is still embryonic, and many basic questions are yet to be posed, let alone answered. One key question is: where is the bottom of a watershed? Knowing where to draw the bottom boundary has not yet been fully addressed in the literature, and how to define the watershed “bottom” is a fraught question. There is large variability across physical and conceptual models regarding how to implement a watershed bottom, and what counts as “deep” varies markedly in different communities. In this commentary, we seek to initiate a dialog on existing approaches to defining the bottom of the watershed. We briefly review the current literature describing how different communities typically frame the answer of just how deep we should look and identify situations where deep flow paths are key to developing realistic conceptual models of watershed systems. We then review the common conceptual approaches used to delineate the watershed lower boundary. Finally, we highlight opportunities to trigger this potential research area at the interface of catchment hydrology and hydrogeology.

2019

DOI bib
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
Günter Blöschl, Marc F. P. Bierkens, António Chambel, Christophe Cudennec, Georgia Destouni, Aldo Fiori, James W. Kirchner, Jeffrey J. McDonnell, H. H. G. Savenije, Murugesu Sivapalan, Christine Stumpp, Elena Toth, Elena Volpi, Gemma Carr, Claire Lupton, José Luis Salinas, Borbála Széles, Alberto Viglione, Hafzullah Aksoy, Scott T. Allen, Anam Amin, Vazken Andréassian, Berit Arheimer, Santosh Aryal, Victor R. Baker, W.E. Bardsley, Marlies Barendrecht, Alena Bartošová, Okke Batelaan, Wouter R. Berghuijs, Keith Beven, Theresa Blume, Thom Bogaard, Pablo Borges de Amorim, Michael E. Böttcher, Gilles Boulet, Korbinian Breinl, Mitja Brilly, Luca Brocca, Wouter Buytaert, Attilio Castellarin, Andrea Castelletti, Xiaohong Chen, Yangbo Chen, Yuanfang Chen, Peter Chifflard, Pierluigi Claps, Martyn Clark, Adrian L. Collins, Barry Croke, Annette Dathe, Paula Cunha David, Felipe P. J. de Barros, Gerrit H. de Rooij, Giuliano Di Baldassarre, Jessica M. Driscoll, Doris Duethmann, Ravindra Dwivedi, Ebru Eriş, William Farmer, James Feiccabrino, Grant Ferguson, Ennio Ferrari, Stefano Ferraris, Benjamin Fersch, David C. Finger, Laura Foglia, Keirnan Fowler, Б. И. Гарцман, Simon Gascoin, Éric Gaumè, Alexander Gelfan, Josie Geris, Shervan Gharari, Tom Gleeson, Miriam Glendell, Alena Gonzalez Bevacqua, María P. González-Dugo, Salvatore Grimaldi, A.B. Gupta, Björn Guse, Dawei Han, David M. Hannah, A. A. Harpold, Stefan Haun, Kate V. Heal, Kay Helfricht, Mathew Herrnegger, Matthew R. Hipsey, Hana Hlaváčiková, Clara Hohmann, Ladislav Holko, Christopher Hopkinson, Markus Hrachowitz, Tissa H. Illangasekare, Azhar Inam, Camyla Innocente dos Santos, Erkan Istanbulluoglu, Ben Jarihani, Zahra Kalantari, Andis Kalvāns, Sonu Khanal, Sina Khatami, Jens Kiesel, M. J. Kirkby, Wouter Knoben, Krzysztof Kochanek, Silvia Kohnová, Alla Kolechkina, Stefan Krause, David K. Kreamer, Heidi Kreibich, Harald Kunstmann, Holger Lange, Margarida L. R. Liberato, Eric Lindquist, Timothy E. Link, Junguo Liu, Daniel P. Loucks, Charles H. Luce, Gil Mahé, Olga Makarieva, Julien Malard, Shamshagul Mashtayeva, Shreedhar Maskey, Josep Mas‐Pla, Maria Mavrova-Guirguinova, Maurizio Mazzoleni, Sebastian H. Mernild, Bruce Dudley Misstear, Alberto Montanari, Hannes Müller‐Thomy, Alireza Nabizadeh, Fernando Nardi, Christopher M. U. Neale, Nataliia Nesterova, Bakhram Nurtaev, Vincent Odongo, Subhabrata Panda, Saket Pande, Zhonghe Pang, Georgia Papacharalampous, Charles Perrin, Laurent Pfister, Rafael Pimentel, María José Polo, David Post, Cristina Prieto, Maria‐Helena Ramos, Maik Renner, José Eduardo Reynolds, Elena Ridolfi, Riccardo Rigon, Mònica Riva, David Robertson, R. Rosso, Tirthankar Roy, João Henrique Macedo Sá, Gianfausto Salvadori, Melody Sandells, Bettina Schaefli, Andreas Schumann, Anna Scolobig, Jan Seibert, Éric Servat, Mojtaba Shafiei, Ashish Sharma, Moussa Sidibé, Roy C. Sidle, Thomas Skaugen, Hugh G. Smith, Sabine M. Spiessl, Lina Stein, Ingelin Steinsland, Ulrich Strasser, Zhongbo Su, Ján Szolgay, David G. Tarboton, Flavia Tauro, Guillaume Thirel, Fuqiang Tian, Rui Tong, Kamshat Tussupova, Hristos Tyralis, R. Uijlenhoet, Rens van Beek, Ruud van der Ent, Martine van der Ploeg, Anne F. Van Loon, Ilja van Meerveld, Ronald van Nooijen, Pieter van Oel, Jean‐Philippe Vidal, Jana von Freyberg, Sergiy Vorogushyn, Przemysław Wachniew, Andrew J. Wade, Philip J. Ward, Ida Westerberg, Christopher J. White, Eric F. Wood, Ross Woods, Zongxue Xu, Koray K. Yılmaz, Yongqiang Zhang
Hydrological Sciences Journal, Volume 64, Issue 10

This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.

DOI bib
Hillslope Hydrology in Global Change Research and Earth System Modeling
Ying Fan, Martyn Clark, David M. Lawrence, Sean Swenson, Lawrence E. Band, Susan L. Brantley, P. D. Brooks, W. E. Dietrich, Alejandro N. Flores, Gordon E. Grant, James W. Kirchner, D. S. Mackay, Jeffrey J. McDonnell, P. C. D. Milly, Pamela Sullivan, C. Tague, Hoori Ajami, Nathaniel W. Chaney, Andreas Hartmann, P. Hazenberg, J. P. McNamara, Jon D. Pelletier, J. Perket, Elham Rouholahnejad Freund, Thorsten Wagener, Xubin Zeng, R. Edward Beighley, Jonathan Buzan, Maoyi Huang, Ben Livneh, Binayak P. Mohanty, Bart Nijssen, Mohammad Safeeq, Chaopeng Shen, Willem van Verseveld, John Volk, Dai Yamazaki
Water Resources Research, Volume 55, Issue 2

Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐m deep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.

2018

DOI bib
Prairie water: a global water futures project to enhance the resilience of prairie communities through sustainable water management
Christopher Spence, Jared D. Wolfe, Colin J. Whitfield, Helen M. Baulch, N. B. Basu, Angela Bedard‐Haughn, Ken Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Karsten Liber, Jeffrey J. McDonnell, Christy A. Morrissey, John W. Pomeroy, Maureen G. Reed, Graham Strickert
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 44, Issue 2

‘I would walk to the end of the street and out over the prairie with the clickety grasshoppers bunging in arcs ahead of me and I could hear the hum and twang of the wind in the great prairie harp o...
Search
Co-authors
Venues