Jiyue Zhu
2021
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Leung Tsang,
M. T. Durand,
Chris Derksen,
A. P. Barros,
Dong-In Kang,
Hans Lievens,
Hans‐Peter Marshall,
Jiyue Zhu,
Joel T. Johnson,
Joshua King,
Juha Lemmetyinen,
Melody Sandells,
Nick Rutter,
Paul Siqueira,
A. W. Nolin,
Batu Osmanoglu,
Carrie Vuyovich,
Edward Kim,
Drew Taylor,
Ioanna Merkouriadi,
Ludovic Brucker,
Mahdi Navari,
Marie Dumont,
Richard Kelly,
Rhae Sung Kim,
Tien-Hao Liao,
Xiaolan Xu
Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.
2018
Forward and Inverse Radar Modeling of Terrestrial Snow Using SnowSAR Data
Jiyue Zhu,
Shurun Tan,
Joshua King,
Chris Derksen,
Juha Lemmetyinen,
Leung Tsang
IEEE Transactions on Geoscience and Remote Sensing, Volume 56, Issue 12
In this paper, we develop a radar snow water equivalent (SWE) retrieval algorithm based on a parameterized forward model of bicontinuous dense media radiative transfer (Bic-DMRT). The algorithm is based on retrieving the absorption loss of the snowpack which is directly proportional to the SWE. In the algorithm, Bic-DMRT is first applied to generate a lookup table (LUT) of snowpack backscattering at X- and Ku-band. Regression training is applied to the LUT to transform the dual-frequency backscatter into functions of two parameters: the scattering albedo at X-band and SWE. The background scattering is subtracted from the SnowSAR data to give the volume scattering of snow. Classification of SnowSAR data is applied to provide a priori information. Based on the obtained volume scattering and the priori information, a cost function is established to find SWE. Performance of the retrieval algorithm was tested using three sets of airborne SnowSAR data acquired over mixed areas in Finland and open tundra landscape in Canada. It is shown that the retrieval algorithm has a root-mean-square error below 30 mm of SWE and a correlation coefficient above 0.64.
Search
Co-authors
- Leung Tsang 2
- Chris Derksen 2
- Joshua King 2
- Juha Lemmetyinen 2
- M. T. Durand 1
- show all...
- A. P. Barros 1
- Dong-In Kang 1
- Hans Lievens 1
- Hans‐Peter Marshall 1
- Joel T. Johnson 1
- Melody Sandells 1
- Nick Rutter 1
- Paul Siqueira 1
- A. W. Nolin 1
- Batu Osmanoglu 1
- Carrie Vuyovich 1
- Edward Kim 1
- Drew Taylor 1
- Ioanna Merkouriadi 1
- Ludovic Brucker 1
- Mahdi Navari 1
- Marie Dumont 1
- Richard Kelly 1
- Rhae Sung Kim 1
- Tien-Hao Liao 1
- Xiaolan Xu 1
- Shurun Tan 1
Venues
- GWF2