John S. Kimball


2023

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel, Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel, Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

DOI bib
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, E. S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A. J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Hould Gosselin, Philip Marsh, Walter C. Oechel, Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, E. S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A. J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Hould Gosselin, Philip Marsh, Walter C. Oechel
Global Change Biology, Volume 29, Issue 5

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.

DOI bib
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, E. S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A. J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Hould Gosselin, Philip Marsh, Walter C. Oechel, Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, E. S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A. J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Hould Gosselin, Philip Marsh, Walter C. Oechel
Global Change Biology, Volume 29, Issue 5

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.

2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, E. S. Euskirchen, Jennifer D. Watts, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, M. Jackowicz-Korczyński, A. J. Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xia Song, Xiaofeng Xu, Elyn Humphreys, Charles D. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Hould Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

2021

DOI bib
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar, Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8

Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

DOI bib
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar, Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8

Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

2019

DOI bib
Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition
Zhihua Liu, John S. Kimball, N. Parazoo, Ashley P. Ballantyne, Wen J. Wang, Nima Madani, Caleb G. Pan, Jennifer D. Watts, Rolf H. Reichle, Oliver Sonnentag, Philip Marsh, Miriam Hurkuck, Manuel Helbig, W. L. Quinton, Donatella Zona, Masahito Ueyama, Hideki Kobayashi, E. S. Euskirchen
Global Change Biology, Volume 26, Issue 2

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.

DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats P. Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, P. M. Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, J. E. Egan, Bo Elberling, E. S. Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie Jastrow, Aram Kalhori, Yongwon Kim, John S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang-Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, Jack W. McFarland, A. David McGuire, Anders Michelsen, Christina Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, W. L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, J. M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
Search
Co-authors
Venues