John Spoelstra


2021

DOI bib
<scp>Size‐based</scp> characterization of freshwater dissolved organic matter finds similarities within a waterbody type across different Canadian ecozones
Pieter J. K. Aukes, Sherry L. Schiff, Jason J. Venkiteswaran, Richard J. Elgood, John Spoelstra
Limnology and Oceanography Letters, Volume 6, Issue 2

Dissolved organic matter (DOM) represents a mixture of organic molecules that vary due to different source materials and degree of processing. Characterizing how DOM composition evolves along the aquatic continuum can be difficult. Using a size‐exclusion chromatography technique (liquid chromatography‐organic carbon detection [LC‐OCD]), we assessed the variability in DOM composition from both surface and groundwaters across a number of Canadian ecozones (mean annual temperature spanning −10°C to +6°C). A wide range in DOM concentration was found from 0.2 to 120 mg C L−1. Proportions of different size‐based groupings across ecozones were variable, yet similarities between specific waterbody types, regardless of location, suggest commonality in the processes dictating DOM composition. A principal component analysis identified 70% of the variation in LC‐OCD derived DOM compositions could be explained by the waterbody type. We find that DOM composition within a specific waterbody type is similar regardless of the differences in climate or surrounding vegetation where the sample originated from.

2020

DOI bib
Size-Based Characterization of Freshwater Dissolved Organic Matter finds Similarities within a Water Body Type across Different Canadian Ecozones
Pieter J. K. Aukes, Sherry L. Schiff, Jason J. Venkiteswaran, Richard J. Elgood, John Spoelstra

Dissolved Organic Matter (DOM) represents a mixture of organic molecules that vary due to different source materials and degree of processing. Characterizing how DOM composition evolves along the aquatic continuum can be difficult. Using a size-exclusion chromatography technique (LC-OCD), we assessed the variability in DOM composition from both surface and groundwaters across a number of Canadian ecozones (mean annual temperature spanning -10 to +6 C). A wide range in DOM concentration was found from 0.2 to 120 mg C/L. Proportions of different size-based groupings across ecozones were variable, yet similarities between specific water-body types, regardless of location, suggest commonality in the processes dictating the evolution of DOM composition. A principal-component analysis identified 70% of the variation in LC-OCD derived DOM compositions could be explained by the water-body type. We find that water-body type has a greater influence on DOM composition than differences in climate or surrounding vegetation.