2023
DOI
bib
abs
Oil and natural gas wells across the NASA ABoVE domain: fugitive methane emissions and broader environmental impacts
Louise Klotz,
Oliver Sonnentag,
Ziming Wang,
Jonathan Wang,
Mary Kang,
Louise Klotz,
Oliver Sonnentag,
Ziming Wang,
Jonathan Wang,
Mary Kang
Environmental Research Letters, Volume 18, Issue 3
Abstract Arctic-boreal regions are experiencing major anthropogenic disturbances in addition to intensifying natural disturbance regimes as a consequence of climate change. Oil and natural gas (OG) activities are extensive in the Arctic-boreal region of western North America, a large portion of which is underlain by permafrost. The total number and distribution of OG wells and their potential fate remain unclear. Consequently, the collective impacts of OG wells on natural and cultural resources, human health and emissions of methane (CH 4 ), are poorly understood. Using public OG well databases, we analysed the distribution of OG wells drilled between 1984 and 2018 across the Core Domain of the NASA Arctic-Boreal Vulnerability Experiment (‘ABoVE domain’). We identified 242 007 OG wells drilled as of 2018 in the ABoVE domain, of which almost two thirds are now inactive or abandoned OG wells. We found that annual drilling has increased from 269 to 8599 OG wells from 1984 to 2014 with around 1000, 700 and 1800 OG wells drilled annually in evergreen forest, deciduous forest and herbaceous land cover types, respectively. 65 588 OG well sites were underlain by permafrost in 2012. Fugitive CH 4 emissions from active and abandoned OG wells drilled in the Canadian portion of the ABoVE domain accounted for approximately 13% of the total anthropogenic CH 4 emissions in Canada in 2018. Our analysis identified OG wells as an anthropogenic disturbance in the ABoVE domain with potentially non-negligible consequences to local populations, ecosystems, and the climate system.
DOI
bib
abs
Oil and natural gas wells across the NASA ABoVE domain: fugitive methane emissions and broader environmental impacts
Louise Klotz,
Oliver Sonnentag,
Ziming Wang,
Jonathan Wang,
Mary Kang,
Louise Klotz,
Oliver Sonnentag,
Ziming Wang,
Jonathan Wang,
Mary Kang
Environmental Research Letters, Volume 18, Issue 3
Abstract Arctic-boreal regions are experiencing major anthropogenic disturbances in addition to intensifying natural disturbance regimes as a consequence of climate change. Oil and natural gas (OG) activities are extensive in the Arctic-boreal region of western North America, a large portion of which is underlain by permafrost. The total number and distribution of OG wells and their potential fate remain unclear. Consequently, the collective impacts of OG wells on natural and cultural resources, human health and emissions of methane (CH 4 ), are poorly understood. Using public OG well databases, we analysed the distribution of OG wells drilled between 1984 and 2018 across the Core Domain of the NASA Arctic-Boreal Vulnerability Experiment (‘ABoVE domain’). We identified 242 007 OG wells drilled as of 2018 in the ABoVE domain, of which almost two thirds are now inactive or abandoned OG wells. We found that annual drilling has increased from 269 to 8599 OG wells from 1984 to 2014 with around 1000, 700 and 1800 OG wells drilled annually in evergreen forest, deciduous forest and herbaceous land cover types, respectively. 65 588 OG well sites were underlain by permafrost in 2012. Fugitive CH 4 emissions from active and abandoned OG wells drilled in the Canadian portion of the ABoVE domain accounted for approximately 13% of the total anthropogenic CH 4 emissions in Canada in 2018. Our analysis identified OG wells as an anthropogenic disturbance in the ABoVE domain with potentially non-negligible consequences to local populations, ecosystems, and the climate system.
2022
DOI
bib
abs
Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses
Adrianna Foster,
Jonathan Wang,
Gerald V. Frost,
Scott J. Davidson,
Elizabeth Hoy,
Kevin W. Turner,
Oliver Sonnentag,
Howard E. Epstein,
Logan T. Berner,
Amanda Armstrong,
Mary Kang,
Brendan M. Rogers,
Elizabeth M. Campbell,
Kimberley Miner,
Kathleen M. Orndahl,
Laura Bourgeau‐Chavez,
D. A. Lutz,
Nancy H. F. French,
Dong Chen,
Jinyang Du,
Tatiana A. Shestakova,
J. K. Shuman,
Ken D. Tape,
Anna‐Maria Virkkala,
Christopher Potter,
S. J. Goetz
Environmental Research Letters, Volume 17, Issue 11
Abstract Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.
2021
DOI
bib
abs
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts,
Susan M. Natali,
Christina Minions,
D. A. Risk,
Kyle A. Arndt,
Donatella Zona,
E. S. Euskirchen,
Adrian V. Rocha,
Oliver Sonnentag,
Manuel Helbig,
Aram Kalhori,
Walter C. Oechel,
Hiroki Ikawa,
Masahito Ueyama,
Rikie Suzuki,
Hideki Kobayashi,
Gerardo Celis,
Edward A. G. Schuur,
Elyn Humphreys,
Yongwon Kim,
Bang‐Yong Lee,
S. J. Goetz,
Nima Madani,
Luke D. Schiferl,
R. Commane,
John S. Kimball,
Zhihua Liu,
Margaret Torn,
Stefano Potter,
Jonathan Wang,
M. Torre Jorgenson,
Jingfeng Xiao,
Xing Li,
Colin W. Edgar,
Jennifer D. Watts,
Susan M. Natali,
Christina Minions,
D. A. Risk,
Kyle A. Arndt,
Donatella Zona,
E. S. Euskirchen,
Adrian V. Rocha,
Oliver Sonnentag,
Manuel Helbig,
Aram Kalhori,
Walter C. Oechel,
Hiroki Ikawa,
Masahito Ueyama,
Rikie Suzuki,
Hideki Kobayashi,
Gerardo Celis,
Edward A. G. Schuur,
Elyn Humphreys,
Yongwon Kim,
Bang‐Yong Lee,
S. J. Goetz,
Nima Madani,
Luke D. Schiferl,
R. Commane,
John S. Kimball,
Zhihua Liu,
Margaret Torn,
Stefano Potter,
Jonathan Wang,
M. Torre Jorgenson,
Jingfeng Xiao,
Xing Li,
Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8
Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.
DOI
bib
abs
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts,
Susan M. Natali,
Christina Minions,
D. A. Risk,
Kyle A. Arndt,
Donatella Zona,
E. S. Euskirchen,
Adrian V. Rocha,
Oliver Sonnentag,
Manuel Helbig,
Aram Kalhori,
Walter C. Oechel,
Hiroki Ikawa,
Masahito Ueyama,
Rikie Suzuki,
Hideki Kobayashi,
Gerardo Celis,
Edward A. G. Schuur,
Elyn Humphreys,
Yongwon Kim,
Bang‐Yong Lee,
S. J. Goetz,
Nima Madani,
Luke D. Schiferl,
R. Commane,
John S. Kimball,
Zhihua Liu,
Margaret Torn,
Stefano Potter,
Jonathan Wang,
M. Torre Jorgenson,
Jingfeng Xiao,
Xing Li,
Colin W. Edgar,
Jennifer D. Watts,
Susan M. Natali,
Christina Minions,
D. A. Risk,
Kyle A. Arndt,
Donatella Zona,
E. S. Euskirchen,
Adrian V. Rocha,
Oliver Sonnentag,
Manuel Helbig,
Aram Kalhori,
Walter C. Oechel,
Hiroki Ikawa,
Masahito Ueyama,
Rikie Suzuki,
Hideki Kobayashi,
Gerardo Celis,
Edward A. G. Schuur,
Elyn Humphreys,
Yongwon Kim,
Bang‐Yong Lee,
S. J. Goetz,
Nima Madani,
Luke D. Schiferl,
R. Commane,
John S. Kimball,
Zhihua Liu,
Margaret Torn,
Stefano Potter,
Jonathan Wang,
M. Torre Jorgenson,
Jingfeng Xiao,
Xing Li,
Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8
Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.
2019
A multitude of disturbance agents, such as wildfires, land use, and climate-driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic–Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high-latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large-scale land cover changes in the Arctic–Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984–2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106 km2 in Alaska and northwestern Canada to characterize regional-scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance-driven decreases in Evergreen Forest area (−14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate-driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate-induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2 seasonality and ecosystem productivity at northern high-latitudes and signal continental-scale shifts in the structure and function of northern high-latitude ecosystems in response to climate change.