Joseph Hamman


2022

DOI bib
New projections of 21st century climate and hydrology for Alaska and Hawaiʻi
Naoki Mizukami, Andrew J. Newman, Jeremy S. Littell, Thomas W. Giambelluca, Andrew W. Wood, E. D. Gutmann, Joseph Hamman, Diana R. Gergel, Bart Nijssen, Martyn P. Clark, Jeffrey R. Arnold
Climate Services, Volume 27

In the United States, high-resolution, century-long, hydroclimate projection datasets have been developed for water resources planning, focusing on the contiguous United States (CONUS) domain. However, there are few statewide hydroclimate projection datasets available for Alaska and Hawaiʻi. The limited information on hydroclimatic change motivates developing hydrologic scenarios from 1950 to 2099 using climate-hydrology impact modeling chains consisting of multiple statistically downscaled climate projections as input to hydrologic model simulations for both states. We adopt an approach similar to the previous CONUS hydrologic assessments where: 1) we select the outputs from ten global climate models (GCM) from the Coupled Model Intercomparison Project Phase 5 with Representative Concentration Pathways 4.5 and 8.5; 2) we perform statistical downscaling to generate climate input data for hydrologic models (12-km grid-spacing for Alaska and 1-km for Hawaiʻi); and 3) we perform process-based hydrologic model simulations. For Alaska, we have advanced the hydrologic model configuration from CONUS by using the full water-energy balance computation, frozen soils and a simple glacier model. The simulations show that robust warming and increases in precipitation produce runoff increases for most of Alaska, with runoff reductions in the currently glacierized areas in Southeast Alaska. For Hawaiʻi, we produce the projections at high resolution (1 km) which highlight high spatial variability of climate variables across the state, and a large spread of runoff across the GCMs is driven by a large precipitation spread across the GCMs. Our new ensemble datasets assist with state-wide climate adaptation and other water planning.

DOI bib
En-GARD: A Statistical Downscaling Framework to Produce and Test Large Ensembles of Climate Projections
E. D. Gutmann, Joseph Hamman, Martyn P. Clark, Trude Eidhammer, Andrew W. Wood, Jeffrey R. Arnold
Journal of Hydrometeorology, Volume 23, Issue 10

Abstract Statistical processing of numerical model output has been a part of both weather forecasting and climate applications for decades. Statistical techniques are used to correct systematic biases in atmospheric model outputs and to represent local effects that are unresolved by the model, referred to as downscaling. Many downscaling techniques have been developed, and it has been difficult to systematically explore the implications of the individual decisions made in the development of downscaling methods. Here we describe a unified framework that enables the user to evaluate multiple decisions made in the methods used to statistically postprocess output from weather and climate models. The Ensemble Generalized Analog Regression Downscaling (En-GARD) method enables the user to select any number of input variables, predictors, mathematical transformations, and combinations for use in parametric or nonparametric downscaling approaches. En-GARD enables explicitly predicting both the probability of event occurrence and the event magnitude. Outputs from En-GARD include errors in model fit, enabling the production of an ensemble of projections through sampling of the probability distributions of each climate variable. We apply En-GARD to regional climate model simulations to evaluate the relative importance of different downscaling method choices on simulations of the current and future climate. We show that choice of predictor variables is the most important decision affecting downscaled future climate outputs, while having little impact on the fidelity of downscaled outcomes for current climate. We also show that weak statistical relationships prevent such approaches from predicting large changes in extreme events on a daily time scale.

2019

DOI bib
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates
O. Chegwidden, Bart Nijssen, David E. Rupp, Jeffrey R. Arnold, Martyn P. Clark, Joseph Hamman, Shih‐Chieh Kao, Yixin Mao, Naoki Mizukami, Philip W. Mote, Ming Pan, Erik Pytlak, Mu Xiao
Earth's Future, Volume 7, Issue 6

Methodological choices can have strong effects on projections of climate change impacts on hydrology. In this study, we investigate the ways in which four different steps in the modeling chain influence the spread in projected changes of different aspects of hydrology. To form the basis of these analyses, we constructed an ensemble of 160 simulations from permutations of two Representative Concentration Pathways, 10 global climate models, two downscaling methods, and four hydrologic model implementations. The study is situated in the Pacific Northwest of North America, which has relevance to a diverse, multinational cast of stakeholders. We analyze the effects of each modeling decision on changes in gridded hydrologic variables of snow water equivalent and runoff, as well as streamflow at point locations. Results show that the choice of representative concentration pathway or global climate model is the driving contributor to the spread in annual streamflow volume and timing. On the other hand, hydrologic model implementation explains most of the spread in changes in low flows. Finally, by grouping the results by climate region the results have the potential to be generalized beyond the Pacific Northwest. Future hydrologic impact assessments can use these results to better tailor their modeling efforts.