Juan I. López‐Moreno


2021

DOI bib
The significance of monitoring high mountain environments to detect heavy precipitation hotspots: a case study in Gredos, Central Spain
Enrique Morán‐Tejeda, José Manuel Llorente-Pinto, Antonio Ceballos Barbancho, Miquel Tomas‐Burguera, César Azorín-Molina, Esteban Alonso‐González, Jesús Revuelto, Javier Herrero, Juan I. López‐Moreno
Theoretical and Applied Climatology, Volume 146, Issue 3-4

Abstract In 2015, a new automatic weather station (AWS) was installed in a high elevation site in Gredos mountains (Central System, Spain). Since then, a surprisingly high number of heavy precipitation events have been recorded (55 days with precipitation over 50 mm, and a maximum daily precipitation of 446.9 mm), making this site a hotspot in Spain in terms of annual precipitation (2177 mm year) and extreme precipitation events. The neighboring stations available in the region with longer data series, including the closest ones, already informed of wet conditions in the area, but not comparable with such anomaly behavior detected in the new station (51% higher). In this study, we present the temporal variability of detected heavy precipitation events in this mountain area, and its narrow relation with atmospheric patterns over the Iberian Peninsula. Results revealed that 65% of the events occurred during advections from West, Southwest, South and cyclonic situations. A regression analysis showed that the precipitation anomaly is mostly explained by the location windward to the Atlantic wet air masses and the elevation. However, the variance explained by the models is rather low (average R 2 for all events > 50 mm is 0.21). The regression models underestimate on average a 60% intensity of rainfall events. Oppositely, the high-resolution weather forecast model AROME at 0.025° was able to point out the extraordinary character of precipitation at this site, and the underestimation of observed precipitation in the AWS was about 26%. This result strongly suggests the usefulness of weather models to improve the knowledge of climatic extremes over large areas, and to improve the design of currently available observational networks.

2020

DOI bib
Snowpack sensitivity to temperature, precipitation, and solar radiation variability over an elevational gradient in the Iberian mountains
Esteban Alonso‐González, Juan I. López‐Moreno, F. Navarro-Serrano, Alba Sanmiguel‐Vallelado, M. Aznárez-Balta, Jesús Revuelto, Antonio Ceballos
Atmospheric Research, Volume 243

Abstract In this study we investigated the sensitivity of the snowpack to increased temperature and short-wave radiation, and precipitation change along an elevation gradient (1500–2500 m a.s.l.) over the main mountain ranges of the Iberian Peninsula (Cantabrian Range, Central Range, Iberian Range, Pyrenees, and the Sierra Nevada). The output of a meso-atmospheric model (WRF) was used as forcing data in a physically-based energy and mass balance snowpack model (FSM2). A cluster analyses was applied to the input data of the FSM2 model to identify a total of 12 cells that summarized the climatic variability of the mountain ranges. The WRF output was then rescaled to various elevation bands using an array of psychrometric and radiative formulae and air temperature lapse rates. A factorial experiment was performed to generate synthetic meteorological series involving gradual alteration of the temperature (0–4 °C increases), short-wave radiation (0–40 Wm-2 increases), and precipitation (variations of ±20%) to force the FSM2. We found differing sensitivities across the various mountainous areas as a consequence of differences in their energy and mass balances. The results showed a generally negative impact of climate warming on the magnitude, duration, and melt rates of the snowpack over all elevation bands, even under scenarios of greater precipitation. The average effect of warming on the duration of the snowpack ranged from −23% per °C at 1500 m a.s.l. to −13% per °C at 2500 m a.s.l., on the peak snow water equivalent ranged from −20% per °C at 1500 m a.s.l. to −15% per °C at 2500 m a.s.l., and on melt rates ranged from −9% to −6% per °C. The effect of increasing short-wave radiation on the snowpack ranged from approximately −2% per 10 Wm−2 at 1500 m a.s.l. to −1% per 10 Wm−2 at 2500 m a.s.l. for both the snowpack duration and peak SWE indices. The effect on the snowpack caused by precipitation changes reduced gradually with increasing elevation, especially in the colder areas. The response of the melt rates to warming was negative in most of the areas at all elevations, suggesting less intense but longer melt seasons.

DOI bib
Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment
Pablo Mendoza, K. N. Musselman, Jesús Revuelto, J. S. Deems, Juan I. López‐Moreno, James McPhee
Water Resources Research, Volume 56, Issue 7

Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT3170079CONICYT/PIA Project AFB180004

DOI bib
Decoupling of warming mountain snowpacks from hydrological regimes
Juan I. López‐Moreno, John W. Pomeroy, Esteban Alonso‐González, Enrique Morán‐Tejeda, Jesús Revuelto
Environmental Research Letters, Volume 15, Issue 11

Abstract Climate warming will reduce the duration of mountain snowpacks and spring runoff, impacting the timing, volume, reliability, and sources of water supplies to mountain headwaters of rivers that support a large proportion of humanity. It is often assumed that snow hydrology will change in proportion to climate warming, but this oversimplifies the complex non-linear physical processes that drive precipitation phases and snowmelt. In this study, snow hydrology predictions made using a physical process snow hydrology model for 44 mountains areas worldwide enabled analysis of how snow and hydrological regimes will respond and interact under climate warming. The results show a generalized decoupling of mountain river hydrology from headwater snowpack regimes. Consequently, most river hydrological regimes shifted from reflecting the seasonal snowmelt freshet to responding rapidly to winter and spring precipitation. Similar to that already observed in particular regions, this study confirms that the worldwide decline in snow accumulation and snow cover duration with climate warming is substantial and spatially variable, yet highly predictable from air temperature and humidity data. Hydrological regimes showed less sensitivity, and less variability in their sensitivity to warming than did snowpack regimes. The sensitivity of the snowpack to warming provides crucial information for estimating shifts in the timing and contribution of snowmelt to runoff. However, no link was found between the magnitude of changes in the snowpack and changes in annual runoff.

DOI bib
Snow Impurities in the Central Pyrenees: From Their Geochemical and Mineralogical Composition towards Their Impacts on Snow Albedo
Jorge Pey, Jesús Revuelto, Natàlia Moreno, Esteban Alonso‐González, Miguel Bartolomé, Jesús Reyes, Simon Gascoin, Juan I. López‐Moreno
Atmosphere, Volume 11, Issue 9

The aim of this work is to understand aerosol transfers to the snowpack in the Spanish Pyrenees (Southern Europe) by determining their episodic mass-loading and composition, and to retrieve their regional impacts regarding optical properties and modification of snow melting. Regular aerosol monitoring has been performed during three consecutive years. Complementarily, short campaigns have been carried out to collect dust-rich snow samples. Atmospheric samples have been chemically characterized in terms of elemental composition and, in some cases, regarding their mineralogy. Snow albedo has been determined in different seasons along the campaign, and temporal variations of snow-depth from different observatories have been related to concentration of impurities in the snow surface. Our results noticed that aerosol flux in the Central Pyrenees during cold seasons (from November to May, up to 12–13 g m−2 of insoluble particles overall accumulated) is much higher than the observed during the warm period (from June to October, typically around 2.1–3.3 g m−2). Such high values observed during cold seasons were driven by the impact of severe African dust episodes. In absence of such extreme episodes, aerosol loadings in cold and warm season appeared comparable. Our study reveals that mineral dust particles from North Africa are a major driver of the aerosol loading in the snowpack in the southern side of the Central Pyrenees. Field data revealed that the heterogeneous spatial distribution of impurities on the snow surface led to differences close to 0.2 on the measured snow albedo within very short distances. Such impacts have clear implications for modelling distributed energy balance of snow and predicting snow melting from mountain headwaters.

DOI bib
Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index
Simon Gascoin, Zacharie Barrou Dumont, César Deschamps-Berger, Florence Marti, Germain Salgues, Juan I. López‐Moreno, Jesús Revuelto, Timothée Michon, Paul Schattan, Olivier Hagolle
Remote Sensing, Volume 12, Issue 18

Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 × tanh(a × NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95% confidence level.

2018

DOI bib
The European mountain cryosphere: a review of its current state, trends, and future challenges
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan I. López‐Moreno, Jan Magnusson, Christoph Marty, Enrique Morán‐Tejeda, Samuel Morin, Mohamed Naaïm, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, Christian Vincent
The Cryosphere, Volume 12, Issue 2

Abstract. The mountain cryosphere of mainland Europe is recognized to have important impacts on a range of environmental processes. In this paper, we provide an overview on the current knowledge on snow, glacier, and permafrost processes, as well as their past, current, and future evolution. We additionally provide an assessment of current cryosphere research in Europe and point to the different domains requiring further research. Emphasis is given to our understanding of climate–cryosphere interactions, cryosphere controls on physical and biological mountain systems, and related impacts. By the end of the century, Europe's mountain cryosphere will have changed to an extent that will impact the landscape, the hydrological regimes, the water resources, and the infrastructure. The impacts will not remain confined to the mountain area but also affect the downstream lowlands, entailing a wide range of socioeconomical consequences. European mountains will have a completely different visual appearance, in which low- and mid-range-altitude glaciers will have disappeared and even large valley glaciers will have experienced significant retreat and mass loss. Due to increased air temperatures and related shifts from solid to liquid precipitation, seasonal snow lines will be found at much higher altitudes, and the snow season will be much shorter than today. These changes in snow and ice melt will cause a shift in the timing of discharge maxima, as well as a transition of runoff regimes from glacial to nival and from nival to pluvial. This will entail significant impacts on the seasonality of high-altitude water availability, with consequences for water storage and management in reservoirs for drinking water, irrigation, and hydropower production. Whereas an upward shift of the tree line and expansion of vegetation can be expected into current periglacial areas, the disappearance of permafrost at lower altitudes and its warming at higher elevations will likely result in mass movements and process chains beyond historical experience. Future cryospheric research has the responsibility not only to foster awareness of these expected changes and to develop targeted strategies to precisely quantify their magnitude and rate of occurrence but also to help in the development of approaches to adapt to these changes and to mitigate their consequences. Major joint efforts are required in the domain of cryospheric monitoring, which will require coordination in terms of data availability and quality. In particular, we recognize the quantification of high-altitude precipitation as a key source of uncertainty in projections of future changes. Improvements in numerical modeling and a better understanding of process chains affecting high-altitude mass movements are the two further fields that – in our view – future cryospheric research should focus on.

2017

DOI bib
Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas
Juan I. López‐Moreno, Simon Gascoin, Javier Herrero, Eric A. Sproles, Marc Pons, Esteban Alonso‐González, Lahoucine Hanich, Abdelghani Boudhar, K. N. Musselman, N. P. Molotch, James O. Sickman, John W. Pomeroy
Environmental Research Letters, Volume 12, Issue 7

In this study we quantified the sensitivity of snow to climate warming in selected mountain sites having a Mediterranean climate, including the Pyrenees in Spain and Andorra, the Sierra Nevada in Spain and California (USA), the Atlas in Morocco, and the Andes in Chile. Meteorological observations from high elevations were used to simulate the snow energy and mass balance (SEMB) and calculate its sensitivity to climate. Very different climate sensitivities were evident amongst the various sites. For example, reductions of 9%–19% and 6–28 days in the mean snow water equivalent (SWE) and snow duration, respectively, were found per °C increase. Simulated changes in precipitation (±20%) did not affect the sensitivities. The Andes and Atlas Mountains have a shallow and cold snowpack, and net radiation dominates the SEMB; and explains their relatively low sensitivity to climate warming. The Pyrenees and USA Sierra Nevada have a deeper and warmer snowpack, and sensible heat flux is more important in the SEMB; this explains the much greater sensitivities of these regions. Differences in sensitivity help explain why, in regions where climate models project relatively greater temperature increases and drier conditions by 2050 (such as the Spanish Sierra Nevada and the Moroccan Atlas Mountains), the decline in snow accumulation and duration is similar to other sites (such as the Pyrenees and the USA Sierra Nevada), where models project stable precipitation and more attenuated warming. The snowpack in the Andes (Chile) exhibited the lowest sensitivity to warming, and is expected to undergo only moderate change (a decrease of <12% in mean SWE, and a reduction of < 7 days in snow duration under RCP 4.5). Snow accumulation and duration in the other regions are projected to decrease substantially (a minimum of 40% in mean SWE and 15 days in snow duration) by 2050.