Jun Chen


DOI bib
Acute exposure to microcystins affects hypothalamic-pituitary axes of male rats
Ting Shi, Linlin Xu, Liang Chen, Jun He, Yeke Wang, Feng Chen, Yang Chen, John P. Giesy, Yu-Ting Wang, Qianhui Wu, Wenli Xu, Jun Chen, Ping Xie
Environmental Pollution, Volume 318

Microcystins (MCs) produced by some cyanobacteria can cause toxicity in animals and humans. In recent years, growing evidence suggests that MCs can act as endocrine disruptors. This research systematically investigated effects of microcystin-LR (MC-LR) on endocrine organs, biosynthesis of hormones and positive/negative feedback of the endocrine system in rats. Male, Sprague-Dawley rats were acutely administrated MC-LR by a single intraperitoneal injection at doses of 45, 67.5 or 90 μg MC-LR/kg body mass (bm), and then euthanized 24 h after exposure. In exposed rats, histological damage of hypothalamus, pituitary, adrenal, testis and thyroid were observed. Serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT), expressions of genes and proteins for biosynthesis of hormones were lesser, which indicated an overall suppression of the hypothalamus-pituitary-adrenal (HPA) axis. Along the hypothalamus-pituitary-gonadal (HPG) axis, lesser concentrations of gonadotropin-releasing hormone (GnRH) and testosterone (T), but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) were observed. Except for greater transcription of cyp19a1 in testes, transcriptions of genes and proteins for T and E2 biosynthesis along the HPG axis were lesser. As for the hypothalamus-pituitary-thyroid (HPT) axis, after MCs treatment, greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of free tri-iodothyronine (fT3) were observed in serum. Concentrations of free tetra-iodothyronine (fT4) were greater in rats dosed with 45 μg MCs/kg, bm, but lesser in rats dosed with 67.5 or 90 μg MCs/kg, bm. Transcripts of genes for biosynthesis of hormones and receptors along the HPT axis and expressions of proteins for biosynthesis of tetra-iodothyronine (T4) and tri-iodothyronine (T3) in thyroid were significantly altered. Cross-talk among the HPA, HPG and HPT axes probably occurred. It was concluded that MCs caused an imbalance of positive and negative feedback of hormonal regulatory axes, blocked biosynthesis of key hormones and exhibited endocrine-disrupting effects.


DOI bib
Health Risks of Chronic Exposure to Small Doses of Microcystins: An Integrative Metabolomic and Biochemical Study of Human Serum
Jun He, Jun Chen, Feng Chen, Liang Chen, John P. Giesy, Hyewon Lee, Liang Gao, Xuwei Deng, Wenjing Wang, Ping Xie
Environmental Science & Technology, Volume 56, Issue 10

Health risks of chronic exposure to microcystins (MCs), a family of aquatic contaminants produced mainly by cyanobacteria, are critical yet unsolved problems. Despite a few epidemiological studies, the metabolic profiles of humans exposed to MCs remain unknown, hindering the deep understanding of the molecular toxicity mechanisms. Here, sensitive nuclear magnetic resonance (NMR)- and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were applied to investigate the serum metabolic profiles of humans living near Lake Chao, where toxic cyanobacterial blooms occur annually. MCs were positively detected in 92 of 144 sera by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a median concentration of 0.016 μg/L. The estimated daily intake (0.15-0.27 μg MC-LReq/day) was less than the tolerable daily intake (TDI, 2.4 μg MC-LR for 60 kg adults) recommended by the World Health Organization (WHO). Obvious disruptions of the amino acid metabolism were confirmed and played important roles in renal impairments associated with serum MC burdens. Chronic oral exposure of mice to 30 μg MC-LR/kg body mass, which is less than the no observed adverse effect level, also led to obvious renal lesions and metabolic dysfunction. These observations provide the first evidence of metabolic disturbance of humans exposed to MCs and indicate that the WHO's TDI value determined traditionally should be lessened to protect human health effectively.