K. J. Devito


DOI bib
Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework
Michel Bechtold, Gabriëlle J. M. De Lannoy, Rolf H. Reichle, Dirk Roose, Nicole Balliston, Iuliia Burdun, K. J. Devito, Juliya Kurbatova, Maria Strack, Evgeny A. Zarov
Remote Sensing of Environment, Volume 246

Abstract There is an urgent need to include northern peatland hydrology in global Earth system models to better understand land-atmosphere interactions and sensitivities of peatland functions to climate change, and, ultimately, to improve climate change predictions. In this study, we introduced for the first time peatland-specific model physics into an assimilation scheme for L-band brightness temperature (Tb) data from the Soil Moisture Ocean Salinity (SMOS) mission to improve groundwater table estimates. We conducted two sets of model-only and data assimilation experiments using the Catchment Land Surface Model (CLSM), applying (over peatlands only) in one of them a peatland-specific adaptation (PEATCLSM). The evaluation against in-situ measurements of peatland groundwater table depth indicates the superiority of PEATCLSM model physics and additionally improved performance after assimilating SMOS Tb observations. The better performance of PEATCLSM over nearly all Northern Hemisphere peatlands is further supported by the better agreement between SMOS Tb observations and Tb estimates from the model-only and data assimilation runs. Within the data assimilation scheme, PEATCLSM reduces Tb observation-minus-forecast residuals and leads to reduced data assimilation updates of water storage components and, thus, reduced water budget imbalances in the assimilation system.

DOI bib
Climate‐change refugia in boreal North America: what, where, and for how long?
Diana Stralberg, Dominique Arseneault, Jennifer L. Baltzer, Quinn E. Barber, Erin M. Bayne, Yan Boulanger, Clifford M. Brown, Hilary A. Cooke, K. J. Devito, Jason E. Edwards, César A. Estevo, Nadele Flynn, Lee E. Frelich, Edward H. Hogg, Mark Johnston, Travis Logan, Steven M. Matsuoka, Paul A. Moore, Toni Lyn Morelli, Jacques Morissette, Elizabeth A. Nelson, Hedvig K. Nenzén, Scott E. Nielsen, Marc André Parisien, John H. Pedlar, David T. Price, Fiona K. A. Schmiegelow, Stuart M. Slattery, Oliver Sonnentag, Daniel K. Thompson, Ellen Whitman
Frontiers in Ecology and the Environment, Volume 18, Issue 5

H latitude regions around the world are experiencing particularly rapid climate change. These regions include the 625 million ha North American boreal region, which contains 16% of the world’s forests and plays a major role in the global carbon cycle (Brandt et al. 2013). Boreal ecosystems are particularly susceptible to rapid climatedriven vegetation change initiated by standreplacing natural disturbances (notably fires), which have increased in number, extent, and frequency (Kasischke and Turetsky 2006; Hanes et al. 2018) and are expected to continue under future climate change (Boulanger et al. 2014). Such disturbances will increasingly complicate species persistence, and it will therefore be critical to identify locations of possible climatechange refugia (areas “relatively buffered from contemporary climate change”) (Morelli et al. 2016). These “slow lanes” for biodiversity will be especially important for conservation and management of boreal species and ecosystems (Morelli et al. 2020). Practically speaking, the refugia concept can translate into specific sites or regions that are expected to be more resistant to the influence of climate change than other areas (“in situ refugia”; Ashcroft 2010). Refugia may also encompass sites or regions to which species may more readily retreat as climate conditions change (“ex situ refugia”; Ashcroft 2010; Keppel et al. 2012), as well as temporary “stepping stones” (Hannah et al. 2014) linking current and future habitats. In addition to areas that are climatically buffered, fire refugia – “places that are disturbed less frequently or less severely by wildfire” (Krawchuk et al. 2016) – may also play key roles in promoting ecosystem persistence under changing conditions (Meddens et al. 2018). Previous examinations of climatechange refugia have primarily emphasized external, terrainmediated mechanisms. Factors such as topographic shading and temperature inverClimatechange refugia in boreal North America: what, where, and for how long?


DOI bib
Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying
Nicholas Kettridge, Max Lukenbach, Kelly Hokanson, K. J. Devito, Richard M. Petrone, Carl Mendoza, J. M. Waddington
Scientific Reports, Volume 9, Issue 1

The potential of high severity wildfires to increase global terrestrial carbon emissions and exacerbate future climatic warming is of international concern. Nowhere is this more prevalent than within high latitude regions where peatlands have, over millennia, accumulated legacy carbon stocks comparable to all human CO2 emissions since the beginning of the industrial revolution. Drying increases rates of peat decomposition and associated atmospheric and aquatic carbon emissions. The degree to which severe wildfires enhance drying under future climates and induce instability in peatland ecological communities and carbon stocks is unknown. Here we show that high burn severities increased post-fire evapotranspiration by 410% within a feather moss peatland by burning through the protective capping layer that restricts evaporative drying in response to low severity burns. High burn severities projected under future climates will therefore leave peatlands that dominate dry sub-humid regions across the boreal, on the edge of their climatic envelopes, more vulnerable to intense post-fire drying, inducing high rates of carbon loss to the atmosphere that amplify the direct combustion emissions.

DOI bib
Hydraulic redistribution and hydrological controls on aspen transpiration and establishment in peatlands following wildfire
Midori Depante, Matthew Q. Morison, Richard M. Petrone, K. J. Devito, Nicholas Kettridge, J. M. Waddington
Hydrological Processes, Volume 33, Issue 21

Abstract In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen ( Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr −1 ) > upland hilltop (0.29 mm hr −1 ) > margin (0.23 mm hr −1 ) > peatland (0.10 mm hr −1 ); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ 18 O) and hydrogen (δ 2 H) isotopes where upland xylem and peat core signatures were −10.0‰ and −117.8‰ and −9.2‰ and −114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.


DOI bib
Remote sensing of ecosystem trajectories as a proxy indicator for watershed water balance
L. Chasmer, K. J. Devito, Chris Hopkinson, Richard M. Petrone
Ecohydrology, Volume 11, Issue 7

Ecosystem trajectories are inextricably linked to hydrology; however, water availability is not easily observed within the landscape. The response of vegetation to soil water availability may provide an indicator of local hydrology and the resilience or sensitivity of ecosystems to long‐term changes in water balance. In this study, vegetation trajectories derived from Landsat Modified Soil Adjusted Vegetation Index over a 22‐year period are used as an indicator of spatio‐temporal changes of watershed water balance and surface water storage within 6 proximal watersheds of the Boreal Plains ecozone of Alberta, Canada. The interactions between hydrology, topography, geology, and land cover type are examined as they relate to vegetation change.

DOI bib
Potential influence of nutrient availability along a hillslope: Peatland gradient on aspen recovery following fire
Midori Depante, Richard M. Petrone, K. J. Devito, Nicholas Kettridge, Merrin L. Macrae, Carl Mendoza, J. M. Waddington
Ecohydrology, Volume 11, Issue 5

The Boreal Plains (BP) of Western Canada have been exposed to increasing disturbance by wildfire and host a mixture of upland‐wetland‐pond complexes with substantial quantities of trembling aspen (Populus tremuloides Michx.) throughout the terrestrial areas. The ability of these tree species to regenerate within both upland and wetland areas of the BP following wildfire is unclear. The purpose of this study was to investigate the influence of fire on nutrient dynamics in soil and water in peatlands and forested landscapes in the BP and relate this to aspen regeneration. Nutrient concentrations, nutrient supply rates, and net nutrient mineralization rates were determined in burned and unburned sections of a peatland and forest and compared with the regeneration of aspen. NO3−, NH4+, and P varied spatially throughout the landscape, and differences were observed between peatland and upland areas. In general, differences in nutrient dynamics were not observed between burned and unburned areas, with the exception of P. Nutrient and growth data suggest that aspen do not require nutrient‐rich conditions for regeneration and instead relied on forest litter to satisfy nutrient demands. Although the peatlands contained high nutrients, aspen did not flourish in the combination of anoxic and aerobic organic‐rich soils present in this area. Although aspen may use peat water and nutrients through their rooting zones, peatlands are unsuitable for aspen re‐establishment in the long‐term. However, the combination of abundant nutrients in surface mineral soils in peat margins may indicate the vulnerability of margins to upland transformations in later successional stages.

DOI bib
A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots
Kelly Hokanson, Paul A. Moore, Max Lukenbach, K. J. Devito, Nicholas Kettridge, R. M. Petrone, Carl Mendoza, J. M. Waddington
Ecohydrology, Volume 11, Issue 4

Northern peatlands are important global carbon stores, but there is concern that these boreal peat reserves are at risk due to increased fire frequency and severity as predicted by climate change models. In a subhumid climate, hydrogeological position is an important control on peatland hydrology and wildfire vulnerability. Consequently, we hypothesized that in a coarse‐textured glaciofluvial outwash, isolated peatlands lacking the moderating effect of large‐scale groundwater flow would have greater water table (WT) variability and would also be more vulnerable to deep WT drawdown and wildfire during dry climate cycles. A holistic approach was taken to evaluate 3 well‐accepted factors that are associated with smouldering in boreal peatlands: hollow microform coverage, peatland margin morphometry, and gravimetric water content. Using a combination of field measurements (bulk density, humification, WT position, hummock–hollow distribution, and margin width) and modelling (1‐D vertical unsaturated flow coupled with a simple peat–fuel energy balance equation), we assessed the vulnerability of peat to smouldering. We found that a peatland in the regionally intermediate topographic position is the most vulnerable to smouldering due to the interaction of variable connectivity to large‐scale groundwater flow and the absence of mineral stratigraphy for limiting WT declines during dry conditions. Our findings represent a novel assessment framework and tool for fire managers by providing a priori knowledge of potential peat smouldering hot spot locations in the landscape to efficiently allocate resources and reduce emergency response time to smouldering events.

DOI bib
Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface
Rhoswen Leonard, Nicholas Kettridge, K. J. Devito, Richard M. Petrone, Carl Mendoza, J. M. Waddington, Stefan Krause
Geophysical Research Letters, Volume 45, Issue 1

Soil‐surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short‐lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil‐surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high‐resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber‐Optic Distributed Temperature Sensing. Soil‐surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.


DOI bib
Peatland water repellency: Importance of soil water content, moss species, and burn severity
Paul A. Moore, Max Lukenbach, Nicholas Kettridge, Richard M. Petrone, K. J. Devito, J. M. Waddington
Journal of Hydrology, Volume 554

Abstract Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g−1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.