Kabir Rasouli


2022

DOI bib
The sensitivity of snow hydrology to changes in air temperature and precipitation in three North American headwater basins
Kabir Rasouli, John W. Pomeroy, Paul H. Whitfield
Journal of Hydrology, Volume 606

• The precipitation increase can offset the impact of warming on mountain snow hydrology. • The offsetting role of precipitation is effective at the high elevations and high latitudes. • The projected precipitation elasticity of annual runoff increases as latitude decreases. • The projected precipitation elasticity of peak snowpack increases as latitude increases. • Elasticities indicated that runoff changes are primarily attributed to precipitation change. Whether or not the impact of warming on mountain snow and runoff can be offset by precipitation increases has not been well examined, but it is crucially important for future downstream water supply. Using the physically based Cold Regions Hydrological Modelling Platform (CRHM), elasticity (percent change in runoff divided by change in a climate forcing) and the sensitivity of snow regimes to perturbations were investigated in three well-instrumented mountain research basins spanning the northern North American Cordillera. Hourly meteorological observations were perturbed using air temperature and precipitation changes and were then used to force hydrological models for each basin. In all three basins, lower temperature sensitivities of annual runoff volume ( ≤ 6% °C −1 ) and higher sensitivities of peak snowpack (−17% °C −1 ) showed that annual runoff was far less sensitive to temperature than the snow regime. Higher and lower precipitation elasticities of annual runoff (1.5 – 2.1) and peak snowpack (0.7 – 1.1) indicated that the runoff change is primarily attributed to precipitation change and, secondarily, to warming. A low discrepancy between observed and simulated precipitation elasticities showed that the model results are reliable, and one can conduct sensitivity analysis. The air temperature elasticities, however, must be interpreted with care as the projected warmings range beyond the observed temperatures and, hence, it is not possible to test their reliability. Simulations using multiple elevations showed that the timing of peak snowpack was most sensitive to temperature. For the range of warming expected from North American climate model simulations, the impacts of warming on annual runoff, but not on peak snowpack, can be offset by the size of precipitation increases projected for the near-future period 2041–2070. To offset the impact of 2 °C warming on annual runoff, precipitation would need to increase by less than 5% in all three basins. To offset the impact of 2 °C warming on peak snowpack, however, precipitation would need to increase by 12% in Wolf Creek in Yukon Territory, 18% in Marmot Creek in the Canadian Rockies, and an amount greater than the maximum projected at Reynolds Mountain in Idaho. The role of increased precipitation as a compensator for the impact of warming on snowpack is more effective at the highest elevations and higher latitudes. Increased precipitation leads to resilient and strongly coupled snow and runoff regimes, contrasting sharply with the sensitive and weakly coupled regimes at low elevations and in temperate climate zones.

2020

DOI bib
A new flow for Canadian young hydrologists: Key scientific challenges addressed by research cultural shifts
Caroline Aubry‐Wake, Lauren Somers, Hayley Alcock, A. M. Anderson, Amin Azarkhish, Samuel Bansah, Nicole M. Bell, Kelly Biagi, Mariana Castañeda-González, Olivier Champagne, Anna Chesnokova, Devin Coone, Thierry Gauthier, Uttam Ghimire, Nathan Glas, Dylan M. Hrach, Oi Yin Lai, Pierrick Lamontagne‐Hallé, Nicolas Leroux, Laura Lyon, Sohom Mandal, Bouchra Nasri, Nataša Popović, Tracy Rankin, Kabir Rasouli, Alexis L. Robinson, Palash Sanyal, Nadine J. Shatilla, Brandon Van Huizen, Sophie Wilkinson, Jessica Williamson, Majid Zaremehrjardy
Hydrological Processes, Volume 34, Issue 8

A new flow for Canadian young hydrologists: Key scientific challenges addressed by research cultural shiftsCaroline Aubry-Wake1, Lauren D. Somers2,3, Hayley Alcock4, Aspen M. Anderson5, Amin Azarkhish6, Samuel Bansah7, Nicole M. Bell8, Kelly Biagi9, Mariana Castaneda-Gonzalez10, Olivier Champagne9, Anna Chesnokova10, Devin Coone6, Tasha-Leigh J. Gauthier11, Uttam Ghimire6, Nathan Glas6, Dylan M. Hrach11, Oi Yin Lai14, Pierrick Lamontagne-Halle3, Nicolas R. Leroux1, Laura Lyon3, Sohom Mandal12, Bouchra R. Nasri13, Natasa Popovic11, Tracy. E. Rankin14, Kabir Rasouli15, Alexis Robinson16, Palash Sanyal17, Nadine J. Shatilla9, 18, Brandon Van Huizen11, Sophie Wilkinson9, Jessica Williamson11, Majid Zaremehrjardy191 Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada2 Civil and Environmental Engineering, Massachusetts Institute of Technology, MA, USA3 Department of Earth and Planetary Sciences, McGill University, Montreal QC4 Department of Natural Resource Science, McGill University, Montreal, QC, Canada5 Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada6 School of Engineering, University of Guelph, Ontario, ON, Canada7 Department of Geological Sciences, University of Manitoba, Winnipeg, Canada8 Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada9 School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada.10 Department of Construction Engineering, Ecole de technologie superieure, Montreal, QC, Canada11 Department of Geography & Environmental Management, University of Waterloo, Waterloo, ON, Canada12 Department of Geography and Environmental Studies, Ryerson University, Toronto, ON, Canada13 Department of Mathematics and Statistics, McGill University, Montreal, Qc, Canada14 Geography Department, McGill University, Montreal, QC, Canada15 Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, QC, Canada16 Department of Geography and Planning, University of Toronto, Toronto, ON17 Global Institute for Water Security, University of Saskatchewan.18 Lorax Environmental Services Ltd, Vancouver, BC, Canada.19 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada

2019

DOI bib
Are the effects of vegetation and soil changes as important as climatechange impacts on hydrological processes?
Kabir Rasouli, John W. Pomeroy, Paul H. Whitfield

Abstract. Hydrological processes are widely understood to be sensitive to changes in climate, but the effects of changes in vegetation and soils have seldom been considered. The response of mountain hydrology to future climate and vegetation/soil changes is modelled in three snowmelt dominated mountain basins in the North American Cordillera. A Cold Regions Hydrological Model developed for each basin was driven with perturbed observed meteorological time series. Monthly perturbations were developed from differences in eleven regional climate model outputs between the present and future scenarios. Future climate change in these basins results in decreased modelled peak snow water equivalent (SWE) but increased evapotranspiration in all basins. All three watersheds became more rainfall-dominated. In Wolf Creek in the Yukon Territory, an insignificant increasing effect of vegetation change on peak SWE was found to be important enough to offset the significant climate change effect on alpine snow. In Marmot Creek in the Canadian Rockies, a combined effect of soil and climate changes on increasing annual runoff becomes significant while their individual effects are not statistically significant. In the relatively warmer Reynolds Mountain East catchment in Idaho, USA, only vegetation change decreases annual runoff volume and changes in soil, climate, or combination of them do not affect runoff. At high elevations in Wolf and Marmot Creeks, modelled vegetation/soil changes moderated the impact of climate change on peak SWE, the timing of peak SWE, evapotranspiration, and annual runoff volume. At medium elevations, these changes intensified the impact of climate change, decreasing peak SWE, and sublimation. The modelled hydrological impacts of changes in climate, vegetation, and soil in mountain environments are similar in magnitude but not consistently in the direction in all biomes; in some combinations, this results in enhanced impacts at lower elevations and latitudes and offsetting effects at higher elevations and latitudes.

DOI bib
A long-term hydrometeorological dataset (1993–2014) of a northern mountain basin: Wolf Creek Research Basin, Yukon Territory, Canada
Kabir Rasouli, John W. Pomeroy, Kabir Rasouli, Tyler J. Williams, Sean K. Carey
Earth System Science Data, Volume 11, Issue 1

Abstract. A set of hydrometeorological data is presented in this paper, which can be used to characterize the hydrometeorology and climate of a subarctic mountain basin and has proven particularly useful for forcing hydrological models and assessing their performance in capturing hydrological processes in subarctic alpine environments. The forcing dataset includes daily precipitation, hourly air temperature, humidity, wind, solar and net radiation, soil temperature, and geographical information system data. The model performance assessment data include snow depth and snow water equivalent, streamflow, soil moisture, and water level in a groundwater well. This dataset was recorded at different elevation bands in Wolf Creek Research Basin, near Whitehorse, Yukon Territory, Canada, representing forest, shrub tundra, and alpine tundra biomes from 1993 through 2014. Measurements continue through 2018 and are planned for the future at this basin and will be updated to the data website. The database presented and described in this article is available for download at https://doi.org/10.20383/101.0113.

DOI bib
A long-term hydrometeorological dataset (1993–2014) of a northern mountain basin: Wolf Creek Research Basin, Yukon Territory, Canada
Kabir Rasouli, John W. Pomeroy, Kabir Rasouli, Tyler J. Williams, Sean K. Carey
Earth System Science Data, Volume 11, Issue 1

Abstract. A set of hydrometeorological data is presented in this paper, which can be used to characterize the hydrometeorology and climate of a subarctic mountain basin and has proven particularly useful for forcing hydrological models and assessing their performance in capturing hydrological processes in subarctic alpine environments. The forcing dataset includes daily precipitation, hourly air temperature, humidity, wind, solar and net radiation, soil temperature, and geographical information system data. The model performance assessment data include snow depth and snow water equivalent, streamflow, soil moisture, and water level in a groundwater well. This dataset was recorded at different elevation bands in Wolf Creek Research Basin, near Whitehorse, Yukon Territory, Canada, representing forest, shrub tundra, and alpine tundra biomes from 1993 through 2014. Measurements continue through 2018 and are planned for the future at this basin and will be updated to the data website. The database presented and described in this article is available for download at https://doi.org/10.20383/101.0113.

DOI bib
Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes?
Kabir Rasouli, John W. Pomeroy, Paul H. Whitfield
Hydrology and Earth System Sciences, Volume 23, Issue 12

Abstract. Hydrological processes are widely understood to be sensitive to changes in climate, but the effects of concomitant changes in vegetation and soils have seldom been considered in snow-dominated mountain basins. The response of mountain hydrology to vegetation/soil changes in the present and a future climate was modeled in three snowmelt-dominated mountain basins in the North American Cordillera. The models developed for each basin using the Cold Regions Hydrological Modeling platform employed current and expected changes to vegetation and soil parameters and were driven with recent and perturbed high-altitude meteorological observations. Monthly perturbations were calculated using the differences in outputs between the present- and a future-climate scenario from 11 regional climate models. In the three basins, future climate change alone decreased the modeled peak snow water equivalent (SWE) by 11 %–47 % and increased the modeled evapotranspiration by 14 %–20 %. However, including future changes in vegetation and soil for each basin changed or reversed these climate change outcomes. In Wolf Creek in the Yukon Territory, Canada, a statistically insignificant increase in SWE due to vegetation increase in the alpine zone was found to offset the statistically significant decrease in SWE due to climate change. In Marmot Creek in the Canadian Rockies, the increase in annual runoff due to the combined effect of soil and climate change was statistically significant, whereas their individual effects were not. In the relatively warmer Reynolds Mountain in Idaho, USA, vegetation change alone decreased the annual runoff volume by 8 %, but changes in soil, climate, or both did not affect runoff. At high elevations in Wolf and Marmot creeks, the model results indicated that vegetation/soil changes moderated the impact of climate change on peak SWE, the timing of peak SWE, evapotranspiration, and the annual runoff volume. However, at medium elevations, these changes intensified the impact of climate change, further decreasing peak SWE and sublimation. The hydrological impacts of changes in climate, vegetation, and soil in mountain environments were similar in magnitude but not consistent in direction for all biomes; in some combinations, this resulted in enhanced impacts at lower elevations and latitudes and moderated impacts at higher elevations and latitudes.

DOI bib
Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera
Kabir Rasouli, John W. Pomeroy, Paul H. Whitfield
Journal of Hydrometeorology, Volume 20, Issue 5

Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins—Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho—each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall–runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.