Kara Webster


2022

DOI bib
The definition of the non-growing season matters: a case study of net ecosystem carbon exchange from a Canadian peatland
Arash Rafat, Eunji Byun, Fereidoun Rezanezhad, William L. Quinton, Elyn Humphreys, Kara Webster, Philippe Van Cappellen
Environmental Research Communications, Volume 4, Issue 2

Abstract Climate change is a threat to the 500 Gt carbon stored in northern peatlands. As the region warms, the rise in mean temperature is more pronounced during the non-growing season (NGS, i.e., winter and parts of the shoulder seasons) when net ecosystem loss of carbon dioxide (CO 2 ) occurs. Many studies have investigated the impacts of climate warming on NGS CO 2 emissions, yet there is a lack of consistency amongst researchers in how the NGS period is defined. This complicates the interpretation of NGS CO 2 emissions and hinders our understanding of seasonal drivers of important terrestrial carbon exchange processes. Here, we analyze the impact of alternative definitions of the NGS for a peatland site with multiple years of CO 2 flux records. Three climatic parameters were considered to define the NGS: air temperature, soil temperature, and snow cover. Our findings reveal positive correlations between estimates of the cumulative non-growing season net ecosystem CO 2 exchange (NGS-NEE) and the length of the NGS for each alternative definition, with the greatest proportion of variability explained using snow cover ( R 2 = 0.89, p < 0.001), followed by air temperature ( R 2 = 0.79, p < 0.001) and soil temperature ( R 2 = 0.54, p = 0.006). Using these correlations, we estimate average daily NGS CO 2 emitted between 1.42 and 1.90 gCO 2 m −2 , depending on which NGS definition is used. Our results highlight the need to explicitly define the NGS based on available climatic parameters to account for regional climate and ecosystem variability.

2021

DOI bib
Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands
Eunji Byun, Fereidoun Rezanezhad, Linden Fairbairn, Stephanie Slowinski, Nathan Basiliko, Jonathan S. Price, William L. Quinton, Pascale Roy-Léveillée, Kara Webster, Philippe Van Cappellen
Scientific Reports, Volume 11, Issue 1

Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.

DOI bib
Non-growing season carbon emissions in a northern peatland are projected to increase under global warming
Arash Rafat, Fereidoun Rezanezhad, William L. Quinton, Elyn Humphreys, Kara Webster, Philippe Van Cappellen
Communications Earth & Environment, Volume 2, Issue 1

Abstract Peatlands are important ecosystems that store approximately one third of terrestrial organic carbon. Non-growing season carbon fluxes significantly contribute to annual carbon budgets in peatlands, yet their response to climate change is poorly understood. Here, we investigate the governing environmental variables of non-growing season carbon emissions in a northern peatland. We develop a support-vector regression model using a continuous 13-year dataset of eddy covariance flux measurements from the Mer Blue Bog, Canada. We determine that only seven variables were needed to reproduce carbon fluxes, which were most sensitive to net radiation above the canopy, soil temperature, wind speed and soil moisture. We find that changes in soil temperature and photosynthesis drove changes in net carbon flux. Assessing net ecosystem carbon exchange under three representative concentration pathways, we project a 103% increase in peatland carbon loss by 2100 under a high emissions scenario. We suggest that peatland carbon losses constitute a strong positive climate feedback loop.