Karl‐Erich Lindenschmidt


2023

DOI bib
Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A European Perspective
Karl‐Erich Lindenschmidt, Knut Alfredsen, Dirk Carstensen, Adam Choryński, David Gustafsson, Michał Halicki, Bernd Hentschel, Niina Karjalainen, Michael Kögel, Tomasz Kolerski, Marika Kornaś-Dynia, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Albert Malinger, Włodzimierz Marszelewski, Fabian Möldner, Barbro Näslund-Landenmark, Tomasz Niedzielski, Antti Parjanne, Bogusław Pawłowski, Iwona Pińskwar, Joanna Remisz, Maik Renner, Michael Roers, Maksymilian Rybacki, Ewelina Szałkiewicz, Michał Szydłowski, Grzegorz Walusiak, Matylda Witek, Mateusz Zagata, Maciej Zdralewicz, Karl‐Erich Lindenschmidt, Knut Alfredsen, Dirk Carstensen, Adam Choryński, David Gustafsson, Michał Halicki, Bernd Hentschel, Niina Karjalainen, Michael Kögel, Tomasz Kolerski, Marika Kornaś-Dynia, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Albert Malinger, Włodzimierz Marszelewski, Fabian Möldner, Barbro Näslund-Landenmark, Tomasz Niedzielski, Antti Parjanne, Bogusław Pawłowski, Iwona Pińskwar, Joanna Remisz, Maik Renner, Michael Roers, Maksymilian Rybacki, Ewelina Szałkiewicz, Michał Szydłowski, Grzegorz Walusiak, Matylda Witek, Mateusz Zagata, Maciej Zdralewicz
Water, Volume 15, Issue 1

The assessment and mapping of riverine flood hazards and risks is recognized by many countries as an important tool for characterizing floods and developing flood management plans. Often, however, these management plans give attention primarily to open-water floods, with ice-jam floods being mostly an afterthought once these plans have been drafted. In some Nordic regions, ice-jam floods can be more severe than open-water floods, with floodwater levels of ice-jam floods often exceeding levels of open-water floods for the same return periods. Hence, it is imperative that flooding due to river ice processes be considered in flood management plans. This also pertains to European member states who are required to submit renewed flood management plans every six years to the European governance authorities. On 19 and 20 October 2022, a workshop entitled “Assessing and mitigating ice-jam flood hazard and risk” was hosted in Poznań, Poland to explore the necessity of incorporating ice-jam flood hazard and risk assessments in the European Union’s Flood Directive. The presentations given at the workshop provided a good overview of flood risk assessments in Europe and how they may change due to the climate in the future. Perspectives from Norway, Sweden, Finland, Germany, and Poland were presented. Mitigation measures, particularly the artificial breakage of river ice covers and ice-jam flood forecasting, were shared. Advances in ice processes were also presented at the workshop, including state-of-the-art developments in tracking ice-floe velocities using particle tracking velocimetry, characterizing hanging dam ice, designing new ice-control structures, detecting, and monitoring river ice covers using composite imagery from both radar and optical satellite sensors, and calculating ice-jam flood hazards using a stochastic modelling approach.

DOI bib
Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A European Perspective
Karl‐Erich Lindenschmidt, Knut Alfredsen, Dirk Carstensen, Adam Choryński, David Gustafsson, Michał Halicki, Bernd Hentschel, Niina Karjalainen, Michael Kögel, Tomasz Kolerski, Marika Kornaś-Dynia, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Albert Malinger, Włodzimierz Marszelewski, Fabian Möldner, Barbro Näslund-Landenmark, Tomasz Niedzielski, Antti Parjanne, Bogusław Pawłowski, Iwona Pińskwar, Joanna Remisz, Maik Renner, Michael Roers, Maksymilian Rybacki, Ewelina Szałkiewicz, Michał Szydłowski, Grzegorz Walusiak, Matylda Witek, Mateusz Zagata, Maciej Zdralewicz, Karl‐Erich Lindenschmidt, Knut Alfredsen, Dirk Carstensen, Adam Choryński, David Gustafsson, Michał Halicki, Bernd Hentschel, Niina Karjalainen, Michael Kögel, Tomasz Kolerski, Marika Kornaś-Dynia, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Albert Malinger, Włodzimierz Marszelewski, Fabian Möldner, Barbro Näslund-Landenmark, Tomasz Niedzielski, Antti Parjanne, Bogusław Pawłowski, Iwona Pińskwar, Joanna Remisz, Maik Renner, Michael Roers, Maksymilian Rybacki, Ewelina Szałkiewicz, Michał Szydłowski, Grzegorz Walusiak, Matylda Witek, Mateusz Zagata, Maciej Zdralewicz
Water, Volume 15, Issue 1

The assessment and mapping of riverine flood hazards and risks is recognized by many countries as an important tool for characterizing floods and developing flood management plans. Often, however, these management plans give attention primarily to open-water floods, with ice-jam floods being mostly an afterthought once these plans have been drafted. In some Nordic regions, ice-jam floods can be more severe than open-water floods, with floodwater levels of ice-jam floods often exceeding levels of open-water floods for the same return periods. Hence, it is imperative that flooding due to river ice processes be considered in flood management plans. This also pertains to European member states who are required to submit renewed flood management plans every six years to the European governance authorities. On 19 and 20 October 2022, a workshop entitled “Assessing and mitigating ice-jam flood hazard and risk” was hosted in Poznań, Poland to explore the necessity of incorporating ice-jam flood hazard and risk assessments in the European Union’s Flood Directive. The presentations given at the workshop provided a good overview of flood risk assessments in Europe and how they may change due to the climate in the future. Perspectives from Norway, Sweden, Finland, Germany, and Poland were presented. Mitigation measures, particularly the artificial breakage of river ice covers and ice-jam flood forecasting, were shared. Advances in ice processes were also presented at the workshop, including state-of-the-art developments in tracking ice-floe velocities using particle tracking velocimetry, characterizing hanging dam ice, designing new ice-control structures, detecting, and monitoring river ice covers using composite imagery from both radar and optical satellite sensors, and calculating ice-jam flood hazards using a stochastic modelling approach.

DOI bib
Extension and refinement of a stochastic modelling approach to assess ice-jam flood hazard
Karl‐Erich Lindenschmidt, Karl‐Erich Lindenschmidt
Hydrology Research, Volume 54, Issue 2

Abstract In the spring of 2020, the town of Fort McMurray, which lies on the banks of the Athabasca River, experienced an ice-jam flood event that was the most severe in approximately 60 years. In order to capture the severity of the event, a stochastic modelling approach, previously developed by the author for ice-jam flood forecasting, has been refined for ice-jam flood hazard and risk assessments and ice-jam mitigation feasibility studies, which is the subject of this paper. Scenarios of artificial breakage demonstrate the applicability of the revised modelling framework.

DOI bib
Extension and refinement of a stochastic modelling approach to assess ice-jam flood hazard
Karl‐Erich Lindenschmidt, Karl‐Erich Lindenschmidt
Hydrology Research, Volume 54, Issue 2

Abstract In the spring of 2020, the town of Fort McMurray, which lies on the banks of the Athabasca River, experienced an ice-jam flood event that was the most severe in approximately 60 years. In order to capture the severity of the event, a stochastic modelling approach, previously developed by the author for ice-jam flood forecasting, has been refined for ice-jam flood hazard and risk assessments and ice-jam mitigation feasibility studies, which is the subject of this paper. Scenarios of artificial breakage demonstrate the applicability of the revised modelling framework.

DOI bib
Surface Water Quality Modelling
Karl‐Erich Lindenschmidt, Karl‐Erich Lindenschmidt
Water, Volume 15, Issue 4

Surface water quality modelling has become an important means of better understanding aquatic and riparian ecosystem processes at all scales, from the micro-scale (e [...]

DOI bib
Surface Water Quality Modelling
Karl‐Erich Lindenschmidt, Karl‐Erich Lindenschmidt
Water, Volume 15, Issue 4

Surface water quality modelling has become an important means of better understanding aquatic and riparian ecosystem processes at all scales, from the micro-scale (e [...]

DOI bib
Modelling Transport and Fate of Copper and Nickel across the South Saskatchewan River Using WASP—TOXI
Saurabh Prajapati, Pouya Sabokruhie, Markus Brinkmann, Karl‐Erich Lindenschmidt, Saurabh Prajapati, Pouya Sabokruhie, Markus Brinkmann, Karl‐Erich Lindenschmidt
Water, Volume 15, Issue 2

The South Saskatchewan River (SSR) is one of the most important river systems in Saskatchewan and, arguably, in Canada. Most of the Saskatchewan residents, industries, and powerplants depend on the SSR for their water requirements. An established 1D modelling approach was chosen and coupled with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS). The WASP (Water Quality Analysis Simulation Program) stream transport module, TOXI, is coupled with flow routing for free-flow streams, ponded segments, and backwater reaches and is capable of calculating the flow of water, sediment, and dissolved constituents across branched and ponded segments. Copper and nickel were chosen as two metals with predominantly anthropogenic (agriculture, mining, and municipal and industrial waste management) and geogenic (natural weathering and erosion) sources, respectively. Analysis was carried out at ten different sites along the South Saskatchewan River, both upstream and downstream of the City of Saskatoon, in the years 2020 and 2021. Model performance was evaluated by comparing model predictions with concentrations of copper and nickel measured in a previously published study. The model performed well in estimating the concentrations of copper and nickel in water samples and worked reasonably well for sediment samples. The model underestimated the concentration values at certain segments in both water and sediment samples. In order to calibrate the model more accurately, extra diffusive contaminant loads were added. While several default parameter values had to be used due to the unavailability of primary historical data, our study demonstrates the predictive power of combining WASP—TOXI and HEC-RAS models for the prediction of contaminant loading. Future studies, including those on the impacts of global climate change on water quality on the Canadian prairies, will benefit from this proof-of-concept study.

DOI bib
Modelling Transport and Fate of Copper and Nickel across the South Saskatchewan River Using WASP—TOXI
Saurabh Prajapati, Pouya Sabokruhie, Markus Brinkmann, Karl‐Erich Lindenschmidt, Saurabh Prajapati, Pouya Sabokruhie, Markus Brinkmann, Karl‐Erich Lindenschmidt
Water, Volume 15, Issue 2

The South Saskatchewan River (SSR) is one of the most important river systems in Saskatchewan and, arguably, in Canada. Most of the Saskatchewan residents, industries, and powerplants depend on the SSR for their water requirements. An established 1D modelling approach was chosen and coupled with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS). The WASP (Water Quality Analysis Simulation Program) stream transport module, TOXI, is coupled with flow routing for free-flow streams, ponded segments, and backwater reaches and is capable of calculating the flow of water, sediment, and dissolved constituents across branched and ponded segments. Copper and nickel were chosen as two metals with predominantly anthropogenic (agriculture, mining, and municipal and industrial waste management) and geogenic (natural weathering and erosion) sources, respectively. Analysis was carried out at ten different sites along the South Saskatchewan River, both upstream and downstream of the City of Saskatoon, in the years 2020 and 2021. Model performance was evaluated by comparing model predictions with concentrations of copper and nickel measured in a previously published study. The model performed well in estimating the concentrations of copper and nickel in water samples and worked reasonably well for sediment samples. The model underestimated the concentration values at certain segments in both water and sediment samples. In order to calibrate the model more accurately, extra diffusive contaminant loads were added. While several default parameter values had to be used due to the unavailability of primary historical data, our study demonstrates the predictive power of combining WASP—TOXI and HEC-RAS models for the prediction of contaminant loading. Future studies, including those on the impacts of global climate change on water quality on the Canadian prairies, will benefit from this proof-of-concept study.

DOI bib
Bias-Corrected RADARSAT-2 Soil Moisture Dynamics Reveal Discharge Hysteresis at An Agricultural Watershed
Ju Hyoung Lee, Karl‐Erich Lindenschmidt
Remote Sensing, Volume 15, Issue 10

Satellites are designed to monitor geospatial data over large areas at a catchment scale. However, most of satellite validation works are conducted at local point scales with a lack of spatial representativeness. Although upscaling them with a spatial average of several point data collected in the field, it is almost impossible to reorganize backscattering responses at pixel scales. Considering the influence of soil storage on watershed streamflow, we thus suggested watershed-scale hydrological validation. In addition, to overcome the limitations of backscattering models that are widely used for C-band Synthetic Aperture Radar (SAR) soil moisture but applied to bare soils only, in this study, RADARSAT-2 soil moisture was stochastically retrieved to correct vegetation effects arising from agricultural lands. Roughness-corrected soil moisture retrievals were assessed at various spatial scales over the Brightwater Creek basin (land cover: crop lands, gross drainage area: 1540 km2) in Saskatchewan, Canada. At the point scale, local station data showed that the Root Mean Square Errors (RMSEs), Unbiased RMSEs (ubRMSEs) and biases of Radarsat-2 were 0.06~0.09 m3/m3, 0.04~0.08 m3/m3 and 0.01~0.05 m3/m3, respectively, while 1 km Soil Moisture Active Passive (SMAP) showed underestimation at RMSEs of 0.1~0.22 m3/m3 and biases of −0.036~−0.2080 m3/m3. Although SMAP soil moisture better distinguished the contributing area at the catchment scale, Radarsat-2 soil moisture showed a better discharge hysteresis. A reliable estimation of the soil storage dynamics is more important for discharge forecasting than a static classification of contributing and noncontributing areas.

2022

DOI bib
Modelling transverse mixing of sediment and vanadium in a river impacted by oil sands mining operations
Karl‐Erich Lindenschmidt, Pouya Sabokruhie, Tammy Rosner
Journal of Hydrology: Regional Studies, Volume 40

The lower Athabasca River was used as a test case using total suspended sediment, chloride and vanadium as the model variables. Upstream model boundary conditions included water from the tributary Clearwater River (right stream tube) and the upper Athabasca River extending upstream of the tributary mouth (left stream tube). This model will be extended to include the Peace-Athabasca Delta (PAD), to determine the implications of mining outfall discharges on a large region of the Athabasca – PAD region. A novel, quasi-two-dimensional surface water-quality modelling approach is presented in which the model domain can be discretised in two dimensions, but a one-dimension solver can still be applied to capture water flow between the discretisation units (segments). The approach requires a river reach to be divided into two stream tubes, along the left and right river sides, with flows exchanging through the segments longitudinally and also laterally between adjacent segments along the two streams. The new method allows the transverse mixing of tributary and outfall water of different constituent concentrations to be simulated along the course of the river. Additional diffuse loading of dissolved vanadium could be determined from the model’s substance balance. A scenario was then simulated in which the transport and fate of vanadium in a floodplain lake and a secondary channel was determined. • Quasi-2D modelling approach proves to be viable for transverse mixing. • Quasi-2D approach allows secondary channels and side lakes to be modelled. • Quasi-2D approach is appropriate to scale up to entire lower Athabasca River reach. • The approach allowed a diffuse loading of dissolved vanadium to be quantified.

DOI bib
Evidence-based identification of integrated water quality systems
Eric Akomeah, Karl‐Erich Lindenschmidt, L. A. Morales-Marín, Elmira Hassanzadeh
Journal of Environmental Planning and Management

Identification of integrated models is still hindered by submodels’ uncertainty propagation. In this article, a novel identifiability and identification framework is applied to screen and establish reasonable hypotheses of an integrated instream (WASP) and catchment water quality (VENSIM) model. Using the framework, the models were linked, and critical parameters and processes identified. First, an ensemble of catchment nutrient loads was simulated with randomized parameter settings of the catchment processes (e.g. nutrient decay rates). A second Monte Carlo analysis was then staged with randomized loadings and parameter values mimicking insteam processes (e.g. algae growth). The most significant parameters and their processes were identified. This coupling of models for a two-step global sensitivity analysis is a novel approach to integrated catchment-scale water quality model identification. Catchment processes were, overall, more significant to the river’s water quality than the instream processes of this Prairie river system investigated (Qu’Appelle River).

DOI bib
Impacts of future climate on the hydrology of a transboundary river basin in northeastern North America
Sujata Budhathoki, Prabin Rokaya, Karl‐Erich Lindenschmidt
Journal of Hydrology, Volume 605

• Model benchmarking was performed using four different meteorological forcing data. • Calculation of water balance revealed the dominant hydrological processes. • Hydrological conditions under future climatic conditions were assessed. • Uncertainty in future flow projections were quantified. Climate change introduces substantial uncertainty in water resources planning and management. This is particularly the case for the river systems in the high latitudes of the Northern Hemisphere that are more vulnerable to global change. The situation becomes more challenging when there is a limited hydrological understanding of the basin. In this study, we assessed the impacts of future climate on the hydrology of the Saint John River Basin (SJRB), which is an important transboundary coastal river basin in northeastern North America. We also additionally performed model benchmarking for the SJRB using four different meteorological forcing datasets. Using the best performing forcing data and model parameters, we studied the water balance of the basin. Our results show that meteorological forcing data play a pivotal role in model performance and therefore can introduce a large degree of uncertainty in hydrological modelling. The analysis of the water balance highlights that runoff and evapotranspiration account for about 99% of the total basin precipitation, with each constituting approximately 50%. The simulation of future flows projects higher winter discharges, but summer flows are estimated to decrease in the 2041–2070 and 2071–2100 periods compared to the baseline period (1991–2020). However, the evaluation of model errors indicates higher confidence in the result that future winter flows will increase, but lower confidence in the results that future summer flows will decrease.

DOI bib
Modelling of ice jam floods under past and future climates: A review
Prabin Rokaya, Karl‐Erich Lindenschmidt, Alain Pietroniro, Martyn Clark
Journal of Hydrology X, Volume 15

• The probable impacts of future climate on ice-jam floods are discussed. • Practical suggestions for modelling ice-jam floods under both past and future climates are provided. • Research opportunities that could lead to further improvements in ice-jam flood modelling and prediction are presented. Ice-jam floods (IJFs) are a key concern in cold-region environments, where seasonal effects of river ice formation and break-up can have substantial impacts on flooding processes. Different statistical, machine learning, and process-based models have been developed to simulate IJF events in order to improve our understanding of river ice processes, to quantify potential flood magnitudes and backwater levels, and to undertake risk analysis under a changing climate. Assessment of IJF risks under future climate is limited due to constraints related to model input data. However, given the broad economic and environmental significance of IJFs and their sensitivity to a changing climate, robust modelling frameworks that can incorporate future climatic changes, and produce reliable scenarios of future IJF risks are needed. In this review paper, we discuss the probable impacts of future climate on IJFs and provide suggestions on modelling IJFs under both past and future climates. We also make recommendations around existing approaches and highlight some data and research opportunities, that could lead to further improvements in IJF modelling and prediction.

DOI bib
Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir
Julie Terry, John-Mark Davies, Karl‐Erich Lindenschmidt
Water, Volume 14, Issue 4

Water quality models are an emerging tool in water management to understand and inform decisions related to eutrophication. This study tested flow scenario effects on the water quality of Buffalo Pound Lake—a eutrophic reservoir supplying water for approximately 25% of Saskatchewan’s population. The model CE-QUAL-W2 was applied to assess the impact of inter-basin water diversion after the impounded lake received high inflows from local runoff. Three water diversion scenarios were tested: continuous flow, immediate release after nutrient loading increased, and a timed release initiated when water levels returned to normal operating range. Each scenario was tested at three different transfer flow rates. The transfers had a dilution effect but did not affect the timing of the nutrient peaks in the upstream portion of the lake. In the lake’s downstream section, nutrients peaked at similar concentrations as the base model, but peaks arrived earlier in the season and attenuated rapidly. Results showed greater variation among scenarios in wet years compared to dry years. Dependent on the timing and quantity of water transferred, some but not all water quality parameters are predicted to improve along with the water diversion flows over the period tested. The results suggest that it is optimal to transfer water while local watershed runoff is minimal.

DOI bib
Climate change impacts on ice jam behavior in an inland delta: a new ice jam projection framework
Fan Zhang, Mohamed Elshamy, Karl‐Erich Lindenschmidt
Climatic Change, Volume 171, Issue 1-2

Ice jams are impacted by several climatic factors that are likely to change under a future warming climate. Due to the complexity of river ice phenology, projection of future ice jams is challenging. However, it is important to be able to project future ice jam behavior. Additionally, ice jam research is limited by the shortage of long-term monitoring data. In this paper, a novel framework for projecting future ice jam behavior is developed and implemented for ice jams in a data-sparse region, the Slave River Delta, NWT, Canada, situated in the Mackenzie River Basin (MRB). This framework employs both historical records and future hydro-meteorological data, acquired from climate and hydrological models, to drive the river ice models and quantify climate-induced influences on ice jams. Ice jam behavior analysis is based on three outputs of the framework: potential of river ice jamming, ice jam initiation date, and the stage frequency distribution of backwater elevation induced by ice jams. Trends of later ice jam initiation and decreased possibility of ice jam formation are projected, but ice jamming events in the Slave River Delta are likely to be more severe and cause higher backwater levels.

DOI bib
A stochastic modelling approach to forecast real-time ice jam flood severity along the transborder (New Brunswick/Maine) Saint John River of North America
Apurba Das, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Stochastic Environmental Research and Risk Assessment, Volume 36, Issue 7

In the higher latitudes of the northern hemisphere, ice jam related flooding can result in millions of dollars of property damages, loss of human life and adverse impacts on ecology. Since ice-jam formation mechanism is stochastic and depends on numerous unpredictable hydraulic and river ice factors, ice-jam associated flood forecasting is a very challenging task. A stochastic modelling framework was developed to forecast real-time ice jam flood severity along the transborder (New Brunswick/Maine) Saint John River of North America during the spring breakup 2021. Modélisation environnementale communautaire—surface hydrology (MESH), a semi-distributed physically-based land-surface hydrological modelling system was used to acquire a 10-day flow forecast. A Monte-Carlo analysis (MOCA) framework was applied to simulate hundreds of possible ice-jam scenarios for the model domain from Fort Kent to Grand Falls using a hydrodynamic river ice model, RIVICE. First, a 10-day outlook was simulated to provide insight on the severity of ice jam flooding during spring breakup. Then, 3-day forecasts were modelled to provide longitudinal profiles of exceedance probabilities of ice jam flood staging along the river during the ice-cover breakup. Overall, results show that the stochastic approach performed well to estimate maximum probable ice-jam backwater level elevations for the spring 2021 breakup season.

DOI bib
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl‐Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami
Hydrological Processes, Volume 36, Issue 4

Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper discusses the scientific and technical challenges of the large-scale modelling of cold region systems and reports recent modelling developments, focussing on MESH, the Canadian community hydrological land surface scheme. New cold region process representations include improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole pond storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multistage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km2). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. These illustrate the current capabilities and limitations of cold region modelling, and the extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.

DOI bib
Hazard assessment and prediction of ice-jam flooding for a river regulated by reservoirs using an integrated probabilistic modelling approach
Mingwen Liu, Haishen Lü, Karl‐Erich Lindenschmidt, Kaili Xü, Yonghua Zhu, Chaolu He, Xiaoyi Wang, Bingqi Xie
Journal of Hydrology, Volume 615

• A real-time ice-jam risk assessment system was developed to better regulate reservoir discharges. • The modelling system improves ice-jam flood predictions considering the influence of reservoir regulation. • Machine learning with deterministic modelling provides more accurate ice-jam flood predictions of regulated rivers. • The modelling system was successfully verified for the Sanhuhekou bend reach regulated by the Sanshenggong reservoir. To effectively alleviate ice-jam flood disasters, it is necessary to carry out hazard assessments and predictions of ice-jam flooding influenced by the operational scheme of a reservoir. However, traditional hydrologic flood routing techniques cannot effectively address the huge uncertainties caused by the many factors that lead to ice-jam flooding. In this paper, a hazard assessment system for regulating flood discharge schemes is developed; it is composed of a machine learning (ML) model, Long Short-Term Memory (LSTM), and a river-ice dynamic model (RIVICE) within a probabilistic method. The modelling system is to aid in the challenge of predicting ice-jam flooding downstream of reservoirs. The LSTM model forecasts the downstream flow under the operational discharge scheme and, combined with the RIVICE model, the backwater level profile of ice jams can be forecasted. Furthermore, a set of backwater level profiles can be provided by probabilistic modelling, and the probability of ice-jam flood inundation can be calculated by comparing backwater levels with the elevation of the river bank; this information can be used to warn of the hazard induced by operational discharges to better aid in the preparedness and mitigation of ice-jam floods. This system was tested successfully for the ice-cover breakup period in the spring of 2008 and 2018 along the Sanhuhekou bend reach of the Yellow River in China.

2021

DOI bib
Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework
Apurba Das, Karl‐Erich Lindenschmidt, Apurba Das, Karl‐Erich Lindenschmidt
Water, Volume 13, Issue 16

Ice-jam floods pose a serious threat to many riverside communities in cold regions. Ice-jam-related flooding can cause loss of human life, millions of dollars in property damage, and adverse impacts on ecology. An effective flood management strategy is necessary to reduce the overall risk in flood-prone areas. Most of these strategies require a detailed risk-based management study to assess their effectiveness in reducing flood risk. Zoning regulation is a sustainable measure to reduce overall flood risk for a flood-prone area. Zoning regulation is a specified area in a floodplain where certain restrictions apply to different land uses (e.g., development or business). A stochastic framework was introduced to evaluate the effectiveness of a potential zoning regulation. A stochastic framework encompasses the impacts of all the possible expected floods instead of a more traditional approach where a single design flood is incorporated. The downtown area of Fort McMurray along the Athabasca River was selected to explore the impact of zoning regulation on reducing expected annual damages (EAD) from ice-jam flooding. The results show that a hypothetical zoning regulation for a certain area in the town of Fort McMurray (TFM) can be effective in substantially reducing the level of EAD. A global sensitivity analysis was also applied to understand the impacts of model inputs on ice-jam flood risk using a regional sensitivity method. The results show that model boundary conditions such as river discharge, the inflowing volume of ice and ice-jam toe locations are highly sensitive to ice-jam flood risk.

DOI bib
Exploring the Potential of Zoning Regulation for Reducing Ice-Jam Flood Risk Using a Stochastic Modelling Framework
Apurba Das, Karl‐Erich Lindenschmidt, Apurba Das, Karl‐Erich Lindenschmidt
Water, Volume 13, Issue 16

Ice-jam floods pose a serious threat to many riverside communities in cold regions. Ice-jam-related flooding can cause loss of human life, millions of dollars in property damage, and adverse impacts on ecology. An effective flood management strategy is necessary to reduce the overall risk in flood-prone areas. Most of these strategies require a detailed risk-based management study to assess their effectiveness in reducing flood risk. Zoning regulation is a sustainable measure to reduce overall flood risk for a flood-prone area. Zoning regulation is a specified area in a floodplain where certain restrictions apply to different land uses (e.g., development or business). A stochastic framework was introduced to evaluate the effectiveness of a potential zoning regulation. A stochastic framework encompasses the impacts of all the possible expected floods instead of a more traditional approach where a single design flood is incorporated. The downtown area of Fort McMurray along the Athabasca River was selected to explore the impact of zoning regulation on reducing expected annual damages (EAD) from ice-jam flooding. The results show that a hypothetical zoning regulation for a certain area in the town of Fort McMurray (TFM) can be effective in substantially reducing the level of EAD. A global sensitivity analysis was also applied to understand the impacts of model inputs on ice-jam flood risk using a regional sensitivity method. The results show that model boundary conditions such as river discharge, the inflowing volume of ice and ice-jam toe locations are highly sensitive to ice-jam flood risk.

DOI bib
Modelling climatic impacts on ice-jam floods: a review of current models, modelling capabilities, challenges, and future prospects
Apurba Das, Karl‐Erich Lindenschmidt, Apurba Das, Karl‐Erich Lindenschmidt
Environmental Reviews, Volume 29, Issue 3

River ice is an important hydraulic and hydrological component of many rivers in the high northern latitudes of the world. It controls the hydraulic characteristics of streamflow, affects the geomorphology of channels, and can cause flooding due to ice-jam formation during ice-cover freeze-up and breakup periods. In recent decades, climate change has considerably altered ice regimes, affecting the severity of ice-jam flooding. Although many approaches have been developed to model river ice regimes and the severity of ice-jam flooding, appropriate methods that account for the impacts of future climate on ice-jam flooding have not been well established. Therefore, the main goals of this study are to review current knowledge regarding climate change impacts on river ice processes and to assess current modelling capabilities to determine the severity of ice jams under future climatic conditions. Finally, a conceptual river ice-jam modelling approach is presented for incorporating climate change impacts on ice jams.

DOI bib
Modelling climatic impacts on ice-jam floods: a review of current models, modelling capabilities, challenges, and future prospects
Apurba Das, Karl‐Erich Lindenschmidt, Apurba Das, Karl‐Erich Lindenschmidt
Environmental Reviews, Volume 29, Issue 3

River ice is an important hydraulic and hydrological component of many rivers in the high northern latitudes of the world. It controls the hydraulic characteristics of streamflow, affects the geomorphology of channels, and can cause flooding due to ice-jam formation during ice-cover freeze-up and breakup periods. In recent decades, climate change has considerably altered ice regimes, affecting the severity of ice-jam flooding. Although many approaches have been developed to model river ice regimes and the severity of ice-jam flooding, appropriate methods that account for the impacts of future climate on ice-jam flooding have not been well established. Therefore, the main goals of this study are to review current knowledge regarding climate change impacts on river ice processes and to assess current modelling capabilities to determine the severity of ice jams under future climatic conditions. Finally, a conceptual river ice-jam modelling approach is presented for incorporating climate change impacts on ice jams.

DOI bib
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl‐Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami, H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl‐Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami

Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.

DOI bib
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl‐Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami, H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl‐Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami

Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.

DOI bib
A Stochastic Modelling Approach to Forecast Real-time Ice Jam Flood Severity Along the Transborder (New Brunswick/Maine) Saint John River of North America
Apurba Das, Sujata Budhathoki, Karl‐Erich Lindenschmidt, Apurba Das, Sujata Budhathoki, Karl‐Erich Lindenschmidt

Abstract Ice jam floods (IJF) are a major concern for many riverine communities, government and non-government authorities and companies in the higher latitudes of the northern hemisphere. Ice jam related flooding can result in millions of dollars of property damages, loss of human life and adverse impacts on ecology. Ice jam flood forecasting is challenging as its formation mechanism is chaotic and depends on numerous unpredictable hydraulic and river ice factors. In this study, Modélisation environnementale communautaire – surface hydrology (MESH), a semi-distributed physically-based land-surface hydrological modelling system was used to acquire a 10-day flow forecast, an important boundary condition for any modelling of river ice-jam flood forecasting. A stochastic modelling approach was then applied to simulate hundreds of possible ice-jam scenarios using the hydrodynamic river ice model RIVICE within a Monte-Carlo Analysis (MOCA) framework for the Saint John River from Fort Kent to Grand Falls. First, a 10-day outlook was simulated to provide insight on the severity of ice jam flooding during spring breakup. Then, 3-day forecasts were modelled to provide longitudinal profiles of exceedance probabilities of ice jam flood staging along the river during the ice-cover breakup. Overall, results show that the stochastic approach performed well to estimate maximum probable ice-jam backwater level elevations for the spring 2021 breakup season.

DOI bib
A Stochastic Modelling Approach to Forecast Real-time Ice Jam Flood Severity Along the Transborder (New Brunswick/Maine) Saint John River of North America
Apurba Das, Sujata Budhathoki, Karl‐Erich Lindenschmidt, Apurba Das, Sujata Budhathoki, Karl‐Erich Lindenschmidt

Abstract Ice jam floods (IJF) are a major concern for many riverine communities, government and non-government authorities and companies in the higher latitudes of the northern hemisphere. Ice jam related flooding can result in millions of dollars of property damages, loss of human life and adverse impacts on ecology. Ice jam flood forecasting is challenging as its formation mechanism is chaotic and depends on numerous unpredictable hydraulic and river ice factors. In this study, Modélisation environnementale communautaire – surface hydrology (MESH), a semi-distributed physically-based land-surface hydrological modelling system was used to acquire a 10-day flow forecast, an important boundary condition for any modelling of river ice-jam flood forecasting. A stochastic modelling approach was then applied to simulate hundreds of possible ice-jam scenarios using the hydrodynamic river ice model RIVICE within a Monte-Carlo Analysis (MOCA) framework for the Saint John River from Fort Kent to Grand Falls. First, a 10-day outlook was simulated to provide insight on the severity of ice jam flooding during spring breakup. Then, 3-day forecasts were modelled to provide longitudinal profiles of exceedance probabilities of ice jam flood staging along the river during the ice-cover breakup. Overall, results show that the stochastic approach performed well to estimate maximum probable ice-jam backwater level elevations for the spring 2021 breakup season.

DOI bib
Effects of quality controlled measured and re-analysed meteorological data on the performance of water temperature simulations
Amir Sadeghian, Jeff J. Hudson, Karl‐Erich Lindenschmidt, Amir Sadeghian, Jeff J. Hudson, Karl‐Erich Lindenschmidt
Hydrological Sciences Journal, Volume 67, Issue 1

ABSTRACT One of the most prominent sources of error and uncertainty in water quality modelling results is the input data. In this study, data from three meteorological databases were used to test the performance of a water temperature model of Lake Diefenbaker: the data from Environment and Climate Change Canada (ECCC) had long-term quality control history (>20 years); the data from the AccuWeather had short-term quality control history (<10 years), and the data from the MeteoBlue database were modelled values. The CE-QUAL-W2 hydrodynamic and water quality model was used for this study. The model was calibrated by adjusting model coefficients controlling the amounts of measured solar radiation and wind that reach the surface of the water. The sensitivity results showed very similar performances, with slightly better performances (root mean square root difference of ± 0.1) with the ECCC data followed by the MeteoBlue data and thereafter by the AccuWeather data.

DOI bib
Effects of quality controlled measured and re-analysed meteorological data on the performance of water temperature simulations
Amir Sadeghian, Jeff J. Hudson, Karl‐Erich Lindenschmidt, Amir Sadeghian, Jeff J. Hudson, Karl‐Erich Lindenschmidt
Hydrological Sciences Journal, Volume 67, Issue 1

ABSTRACT One of the most prominent sources of error and uncertainty in water quality modelling results is the input data. In this study, data from three meteorological databases were used to test the performance of a water temperature model of Lake Diefenbaker: the data from Environment and Climate Change Canada (ECCC) had long-term quality control history (>20 years); the data from the AccuWeather had short-term quality control history (<10 years), and the data from the MeteoBlue database were modelled values. The CE-QUAL-W2 hydrodynamic and water quality model was used for this study. The model was calibrated by adjusting model coefficients controlling the amounts of measured solar radiation and wind that reach the surface of the water. The sensitivity results showed very similar performances, with slightly better performances (root mean square root difference of ± 0.1) with the ECCC data followed by the MeteoBlue data and thereafter by the AccuWeather data.

DOI bib
Stochastic bias correction for RADARSAT-2 soil moisture retrieved over vegetated areas
Ju Hyoung Lee, Sujata Budhathoki, Karl‐Erich Lindenschmidt, Ju Hyoung Lee, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Geocarto International

Abstract SAR data provide the high-resolution images useful for monitoring environment, and natural resources. Nevertheless, it has been a great challenge to retrieve soil moisture over vegetated sites from SAR backscatter coefficients, as it is almost impossible to parameterize spatially heterogeneous and time-varying roughness, the effect of rainfall or canopy volume scattering with implicit equations. We suggest a Monte Carlo Method (MCM) as a strategy to mitigate non-linear errors in retrievals arising from rainfall, and vegetation growth. The Advanced Integral Equation Model (AIEM) is repeatedly run in a forward mode for establishing the Gaussian-distributed soil roughness and backscatter coefficients. The mean value of soil moisture ensembles inverted from those was taken as an optimal estimate. Local validations show that Root Mean Square Errors (RMSEs) were 0.05 ∼ 0.07 m3/m3 at the stations in Saskatchewan, Canada. Biases were 0.01 m3/m3. Spatial distribution illustrates that the retrieval biases were mitigated, resolving AIEM inversion errors.

DOI bib
Stochastic bias correction for RADARSAT-2 soil moisture retrieved over vegetated areas
Ju Hyoung Lee, Sujata Budhathoki, Karl‐Erich Lindenschmidt, Ju Hyoung Lee, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Geocarto International

Abstract SAR data provide the high-resolution images useful for monitoring environment, and natural resources. Nevertheless, it has been a great challenge to retrieve soil moisture over vegetated sites from SAR backscatter coefficients, as it is almost impossible to parameterize spatially heterogeneous and time-varying roughness, the effect of rainfall or canopy volume scattering with implicit equations. We suggest a Monte Carlo Method (MCM) as a strategy to mitigate non-linear errors in retrievals arising from rainfall, and vegetation growth. The Advanced Integral Equation Model (AIEM) is repeatedly run in a forward mode for establishing the Gaussian-distributed soil roughness and backscatter coefficients. The mean value of soil moisture ensembles inverted from those was taken as an optimal estimate. Local validations show that Root Mean Square Errors (RMSEs) were 0.05 ∼ 0.07 m3/m3 at the stations in Saskatchewan, Canada. Biases were 0.01 m3/m3. Spatial distribution illustrates that the retrieval biases were mitigated, resolving AIEM inversion errors.

DOI bib
Proof-of-Concept of a Quasi-2D Water-Quality Modelling Approach to Simulate Transverse Mixing in Rivers
Pouya Sabokruhie, Eric Akomeah, Tammy Rosner, Karl‐Erich Lindenschmidt, Pouya Sabokruhie, Eric Akomeah, Tammy Rosner, Karl‐Erich Lindenschmidt
Water, Volume 13, Issue 21

A quasi-two-dimensional (quasi-2D) modelling approach is introduced to mimic transverse mixing of an inflow into a river from one of its banks, either an industrial outfall or a tributary. The concentrations of determinands in the inflow vary greatly from those in the river, leading to very long mixing lengths in the river downstream of the inflow location. Ideally, a two-dimensional (2D) model would be used on a small scale to capture the mixing of the two flow streams. However, for large-scale applications of several hundreds of kilometres of river length, such an approach demands too many computational resources and too much computational time, especially if the application will at some point require ensemble input from climate-change scenario data. However, a one-dimensional (1D) model with variables varying in the longitudinal flow direction but averaged across the cross-sections is too simple of an approach to capture the lateral mixing between different flow streams within the river. Hence, a quasi-2D method is proposed in which a simplified 1D solver is still applied but the discretisation of the model setup can be carried out in such a way as to enable a 2D representation of the model domain. The quasi-2D model setup also allows secondary channels and side lakes in floodplains to be incorporated into the discretisation. To show proof-of-concept, the approach has been tested on a stretch of the lower Athabasca River in Canada flowing through the oil sands region between Fort McMurray and Fort MacKay. A dye tracer and suspended sediments are the constituents modelled in this test case.

DOI bib
Proof-of-Concept of a Quasi-2D Water-Quality Modelling Approach to Simulate Transverse Mixing in Rivers
Pouya Sabokruhie, Eric Akomeah, Tammy Rosner, Karl‐Erich Lindenschmidt, Pouya Sabokruhie, Eric Akomeah, Tammy Rosner, Karl‐Erich Lindenschmidt
Water, Volume 13, Issue 21

A quasi-two-dimensional (quasi-2D) modelling approach is introduced to mimic transverse mixing of an inflow into a river from one of its banks, either an industrial outfall or a tributary. The concentrations of determinands in the inflow vary greatly from those in the river, leading to very long mixing lengths in the river downstream of the inflow location. Ideally, a two-dimensional (2D) model would be used on a small scale to capture the mixing of the two flow streams. However, for large-scale applications of several hundreds of kilometres of river length, such an approach demands too many computational resources and too much computational time, especially if the application will at some point require ensemble input from climate-change scenario data. However, a one-dimensional (1D) model with variables varying in the longitudinal flow direction but averaged across the cross-sections is too simple of an approach to capture the lateral mixing between different flow streams within the river. Hence, a quasi-2D method is proposed in which a simplified 1D solver is still applied but the discretisation of the model setup can be carried out in such a way as to enable a 2D representation of the model domain. The quasi-2D model setup also allows secondary channels and side lakes in floodplains to be incorporated into the discretisation. To show proof-of-concept, the approach has been tested on a stretch of the lower Athabasca River in Canada flowing through the oil sands region between Fort McMurray and Fort MacKay. A dye tracer and suspended sediments are the constituents modelled in this test case.

DOI bib
Evaluation of the sensitivity of hydraulic model parameters, boundary conditions and digital elevation models on ice-jam flood delineation
Apurba Das, Karl‐Erich Lindenschmidt
Cold Regions Science and Technology, Volume 183

Abstract Model parameters and boundary conditions characterizing flood domains in riverine flood modelling play an important role in the delineation of flood hazard along rivers. Since the digital elevation model (DEM) is an integral part of the delineation of flood hazard, it is necessary to determine the relative sensitivity of the DEM alongside the hydraulic model parameters and boundary conditions. This study provides a novel framework to examine the relative sensitivity of a river ice hydraulic model and various DEMs on ice-jam flood delineation. The Athabasca River at Fort McMurray in Canada is presented as a test site. The study found that ice-jam flood delineation is highly sensitive to DEMs. While flood hazard delineation is low to moderate sensitive to all the model parameters, it is highly sensitive to almost all the boundary conditions.

DOI bib
Measuring the skill of an operational ice jam flood forecasting system
Brandon S. Williams, Apurba Das, Peter Johnston, Bin Luo, Karl‐Erich Lindenschmidt
International Journal of Disaster Risk Reduction, Volume 52

Though mitigation measures and research have increased over the last few decades, ice jams and associated flooding continue to be one of the most underestimated disasters in many northern countries. Operational ice jam flood forecasting systems are becoming one of the more prominent tools used in mitigating ice-related flood risk within Canada. Several forecasting systems have been adopted across the country and forecasters are constantly looking to improve the accuracy and consistency of their systems. The Lower Red River in Manitoba has been the subject in discussion of many ice jam related studies, and a data-driven ice-jam hazard forecasting system is currently in use at this site. This system differs from hydrologic model driven forecasting systems used for other ice jam prone rivers across Canada. This study focuses on identifying the methodology of the data driven ice jam flood forecasting system, along with the methodology of the forecasting procedures. Furthermore, the effectiveness of the data driven forecasting system is measured and assessed for the Lower Red River's 2020 breakup season.

DOI bib
The impacts of changing climate and streamflow on nutrient speciation in a large Prairie reservoir
Eric Akomeah, L. A. Morales-Marín, Meghan Carr, Amir Sadeghian, Karl‐Erich Lindenschmidt
Journal of Environmental Management, Volume 288

Climate mediated warming water temperature, drought and extreme flooding are projected to shift the phenology of nutrients in receiving lakes and reservoirs further intensifying eutrophication and algal blooms, especially in temperate reservoirs. An emerging issue in reservoir management is the prediction of climate change impacts, a necessity for sound decision making and sustainable management. Lake Diefenbaker is a large multipurpose reservoir in the Canadian Prairies. In this study, the impact of climate change on nutrient speciation in Lake Diefenbaker is examined using loosely linked SpAtially Referenced Regression On Watershed attributes (SPARROW) and CE-QUAL-W2 models. Two climate mediated scenarios, RCP 8.5 representing the most extreme climate change, and climate induced streamflow were modelled. Nutrient levels are anticipated to double under the climate change and streamflow scenarios. Winter and spring were identified as hot moments for nitrogen pollution with a plausible saturation of nitrous oxides in the future. Of concern is a plausible recycling of nitrate through dissimilatory nitrate reduction to ammonium. Summer and fall on the other hand represent the period for phosphorus enrichment and internal loading with a probable succession of cyanobacteria in the summer. • Nutrient cycling in a large reservoir is investigated under two climate mediated scenarios. • Two loosely coupled models are forced with projected climate and streamflow changes. • Nitrogen pollution is projected to worsen during winter and spring during the 2040 decade. • Reservoir internal loading is anticipated to accelerate during the intermediate decade.

DOI bib
A generic approach to evaluate costs and effectiveness of agricultural Beneficial Management Practices to improve water quality management
Mohamed Khalil Zammali, Elmira Hassanzadeh, Etienne Shupena-Soulodre, Karl‐Erich Lindenschmidt
Journal of Environmental Management, Volume 287

Abstract Nutrient export from agricultural areas is among the main contributors to water pollution in various watersheds. Agricultural Beneficial Management Practices (BMPs) are commonly used to reduce excessive nutrient runoff and improve water quality. The successful uptake of BMPs not only depends on their effectiveness but also on their costs of implementation. This study conducts a set of cost-effectiveness analyses to help stakeholders identify their preferred combinations of BMPs in the Qu’Appelle River Basin, a typical watershed in the Canadian Prairies. The considered BMPs are related to cattle and cropping farms and are initially selected by agricultural producers in this region. The analyses use a water quality model to estimate the impact of implementing BMPs on nutrient export, and the cost estimation model to approximate the cost of implementing BMPs at tributary and watershed scales. Our results show that BMPs' effectiveness, total costs of implementation and costs per kilogram of nutrient abatement vary between tributaries. However, wetland conservation is among the optimal practices to improve water quality across the watershed. It is also found that the rates of BMP adoption by stakeholders can influence the effectiveness of practices in a large watershed scale, which highlights the importance of stakeholder engagement in water quality management. This type of analyses can help stakeholders choose single or a combination of BMPs according to their available budget and acceptable levels of reduction in nutrients.

DOI bib
Evaluation of the implications of ice‐jam flood mitigation measures
Apurba Das, Karl‐Erich Lindenschmidt
Journal of Flood Risk Management, Volume 14, Issue 2

Ice‐jam flood risk management requires new approaches to reduce flood damages. Although many structural and non‐structural measures are implemented to reduce the impacts of ice‐jam flooding, there are still many challenges in identifying appropriate strategies to reduce the ice‐jam flood risk along northern rivers. The main purpose of this study is to provide a novel methodological framework to assess the feasibility of various ice‐jam flood mitigation measures based on risk analysis. A total of three ice‐jam flood mitigation measures (artificial breakup, sediment dredging and dike installation) were examined using a stochastic modelling framework for the potential to reduce the ice‐jam flood risk along the Athabasca River at Fort McMurray. An ensemble of hundreds of backwater level profiles was used to construct ice‐jam flood hazard maps to estimate expected annual damages, using depth‐damage curves for structural and content damages, within the downtown area of Fort McMurray. The results show that, while sediment dredging may be able to reduce a certain level of expected annual damages in the town, and artificial breakup and a dike with a crest elevation of 250 m a.s.l. can be the most effective measures to reduce the amount of expected annual damages.

2020

DOI bib
Improved modelling of a Prairie catchment using a progressive two-stage calibration strategy with in situ soil moisture and streamflow data
Sujata Budhathoki, Prabin Rokaya, Karl‐Erich Lindenschmidt
Hydrology Research, Volume 51, Issue 3

Abstract Dynamic contributing areas, various fill-and-spill mechanisms and cold-region processes make the hydrological modelling of the Prairies very challenging. Several models (from simple conceptual to advanced process-based) are available, but the focus has been largely in reproducing streamflow. Few studies have assimilated soil moisture and other hydrological fluxes for improved simulation, but the emphasis has been predominately on simulating contributing areas. However, previous research has shown that the contributing areas are dynamic, and can vary from one year to the next, depending on hydro-meteorological conditions. Therefore, the areas deemed non-contributing can also occasionally contribute to streamflow. In this study, we introduce a progressive two-stage calibration strategy to constrain soil moisture in non-contributing areas. We demonstrate that constraining soil moisture in non-contributing areas can result in improved hydrological simulations and more realistic process representations. The Nash–Sutcliffe efficiency (NSE) values for simulated soil moisture in contributing areas increased by 68% at 20 cm and 25% at 50 cm soil depths during validation when non-contributing areas were constrained. This further led to increases in NSE values in streamflow simulation during calibration (6%) and validation (12%). Our findings suggest that soil moisture in non-contributing areas should be properly constrained for improved modelling of Prairie catchments.

DOI bib
A multi-objective calibration approach using in-situ soil moisture data for improved hydrological simulation of the Prairies
Sujata Budhathoki, Prabin Rokaya, Karl‐Erich Lindenschmidt, Bruce Davison
Hydrological Sciences Journal, Volume 65, Issue 4

Traditionally, hydrological models are only calibrated to reproduce streamflow regime without considering other hydrological state variables, such as soil moisture and evapotranspiration. Limited s...

DOI bib
Impacts of Varying Dam Outflow Elevations on Water Temperature, Dissolved Oxygen, and Nutrient Distributions in a Large Prairie Reservoir
Meghan Carr, Amir Sadeghian, Karl‐Erich Lindenschmidt, Karsten Rinke, L. A. Morales-Marín
Environmental Engineering Science, Volume 37, Issue 1

Dam operations are known to have significant impacts on reservoir hydrodynamics and solute transport processes. The Gardiner Dam, one of the structures that forms the Lake Diefenbaker reservoir located in the Canadian Prairies, is managed for hydropower generation and agricultural irrigation and is known to have widely altering temperature regimes and nutrient circulations. This study applies the hydrodynamic and nutrient CE-QUAL-W2 model to explore how various withdrawal depths (5, 15, 25, 35, 45, and 55 m) influence the concentrations and distribution of nutrients, temperature, and dissolved oxygen (DO) within the Lake Diefenbaker reservoir. As expected, the highest dissolved nutrient (phosphate, PO43--P and nitrate, NO3--N ) concentrations were associated with hypoxic depth horizons in both studied years. During summer high flow period spillway operations impact the distribution of nutrients, water temperatures, and DO as increased epilimnion flow velocities route the incoming water through the surface of the reservoir and reduce mixing and surface warming. This reduces reservoir concentrations but can lead to increased outflow nitrogen (N) and phosphorus (P) concentrations. Lower withdrawal elevations pull warmer surface water deeper within the reservoir and decrease reservoir DO during summer stratification. During fall turnover low outflow elevations increase water column mixing and draws warmer water deeper, leading to slightly higher temperatures and nutrient concentrations than shallow withdrawal elevations. The 15 m depth (540 m above sea level) outflow generally provided the best compromise for overall reservoir and outflow nutrient reduction.

DOI bib
Ice-Jam Flood Risk Assessment and Hazard Mapping under Future Climate
Apurba Das, Prabin Rokaya, Karl‐Erich Lindenschmidt
Journal of Water Resources Planning and Management, Volume 146, Issue 6

AbstractIn cold-region environments, ice-jam floods (IJFs) can result in high water levels in rivers to overtop levees, leading to devastating floods. Since climatic conditions play an important ro...

DOI bib
Sensitivity of boundary data in a shallow prairie lake model
Julie Terry, Karl‐Erich Lindenschmidt
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 45, Issue 3

A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error....

DOI bib
A physically-based modelling framework for operational forecasting of river ice breakup
Prabin Rokaya, L. A. Morales-Marín, Karl‐Erich Lindenschmidt
Advances in Water Resources, Volume 139

Abstract Forecasting river ice breakup is critical for supporting emergency responses to river ice-related flooding along rivers in the northern hemisphere. However, due to complex river ice processes, forecasting river ice breakup is more challenging than predicting open-water flood conditions. Although considerable progress has been made in understanding the mechanisms and characteristics of breakup processes and in forecasting breakup timing using empirical methods at the local scale, fewer advances have been made in understanding and forecasting breakup using physically-based models, particularly at the catchment scale. In this study, we present a physically-based coupled hydrological and water temperature modelling framework for breakup prediction in cold region catchments in real time. The modelling framework was applied for operational forecasting of the 2019 breakup event along the Athabasca River at Fort McMurray in Alberta. Further model validation was performed by hindcasting the 2016, 2017 and 2018 breakup events. The model shows promising results for predicting the ice cover breakup with an average error of about 5 days, demonstrating its usefulness in real-time operational forecasting. Importantly, the model generates breakup progression at the catchment scale, providing an advantage over existing site specific breakup prediction methods.

DOI bib
Impacts of future climate on the hydrology of a northern headwaters basin and its implications for a downstream deltaic ecosystem
Prabin Rokaya, Daniel L. Peters, Mohamed Elshamy, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Hydrological Processes, Volume 34, Issue 7

Anthropogenic and climatic‐induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate‐ and regulation‐induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open‐water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land‐surface hydrological model to simulate hydro‐ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30‐day and 90‐day maximum flows in the Smoky River will affect open‐water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze‐up flows for the 2071–2100 period showed mixed implications for the ice‐jam flooding, which is essential for recharging high‐elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub‐basin, the sustainability of the PAD still remains uncertain.

DOI bib
An ice jam flood hazard assessment of a lowland river and its terminus inland delta
Brandon S. Williams, Apurba Das, Bin Luo, Karl‐Erich Lindenschmidt
Natural Hazards, Volume 105, Issue 3

Flooding is one of the most frequent and most costly natural disasters that occur throughout Canada, and although there is ongoing work to update and improve flood hazard assessments and mapping of high flood risk rivers throughout the country, most studies only delve into open water flooding. However, many rivers in Canada experience higher peak water levels due to ice jamming, resulting in severe flooding of surrounding areas. Hence, there is an urgency to expand current flood hazard assessments to include ice jam flooding for better flood management practices. One area that is often plagued with ice jam flooding is the lowest reach of Manitoba’s Red River. The Lower Red River is a low-lying river with a terminus inland delta where water levels are governed by Lake Winnipeg. Ice jam floods often divert water into the lower Red River’s floodplain that is continually being encroached by development. RIVICE, Environment Canada’s one-dimensional ice hydraulic model, was set up within a Monte Carlo framework to simulate an envelope of backwater level profiles that result from ice jams within the study site. Non-exceedance probability profiles were created from the envelope of backwater level profiles to assess ice jam flood hazard.

DOI bib
Current status and advancement suggestions of ice-jam flood hazard and risk assessment
Apurba Das, Karl‐Erich Lindenschmidt
Environmental Reviews, Volume 28, Issue 4

In many northern rivers, ice-jam flooding can be more severe than open-water flooding, leading to human casualties, damages to property and infrastructure, and adverse impacts on the ecology. Consequently, ice jam related flooding is a major concern for many riverside communities, water authorities, insurance companies, and government agencies. Ice-jam flood hazard delineation and risk analysis are important measures for flood preparation, mitigation, and management strategies. Although methodologies and techniques for open-water flood hazard and risk assessment are well established, methodologies and techniques for ice-jam flood hazard and risk assessment are often unavailable or less developed. In addition to this, a considerable number of studies have been conducted in the context of flood management, but a very limited number of studies have been carried out in real-time flood risk analysis during operational flood forecasting. In this paper, the current status of ice-jam flood hazard delineation and risk analysis is discussed. A framework for real-time risk analysis for operational flood forecasting is also discussed. Finally, current limitations and future requirements for developing effective ice-jam flood hazard delineation and risk analysis methodologies are provided.

2019

DOI bib
Incorporating social dimensions in hydrological and water quality modeling to evaluate the effectiveness of agricultural beneficial management practices in a Prairie River Basin
Lori Bradford, Anuja Thapa, Ashleigh Duffy, Elmira Hassanzadeh, Graham Strickert, Bram Noble, Karl‐Erich Lindenschmidt
Environmental Science and Pollution Research, Volume 27, Issue 13

There is growing interest to develop processes for creating user-informed watershed scale models of hydrology and water quality and to assist in decision-making for balanced policies for managing watersheds. Watershed models can be enhanced with the incorporation of social dimensions of watershed management as brought forward by participants such as the perspectives, values, and norms of people that depend on the land, water, and ecosystems for sustenance, economies, and overall wellbeing. In this work, we explore the value of combining both qualitative and quantitative methods and social science data to enhance salience and legitimacy of watershed models so that end-users are more engaged. We discuss pilot testing and engagement workshops for building and testing a systems dynamics model of the Qu'Appelle Valley to gather insights from local farmers and understand their perceptions of Beneficial Management Practices (BMPs). Mixed-method workshops with agricultural producers in the Qu'Appelle Watershed gathered feedback on the developing model and the incorporation of social determinants affecting decision-making. Analysis of focus groups and factor analysis of Q-sorts were used to identify the desired components of the model, and whether it supported farmers' understanding of the potential effects of BMPs on water quality. We explored farmers' engagement with models testing BMPs and the potential of incorporating their decision processes within the model itself. Finally, we discuss the reception of the process and the practicality of the approach in providing legitimate and credible decision support tools for a community of farmers.

DOI bib
A framework for engaging stakeholders in water quality modeling and management: Application to the Qu'Appelle River Basin, Canada
Elmira Hassanzadeh, Graham Strickert, L. A. Morales-Marín, Bram Noble, Helen M. Baulch, Etienne Shupena-Soulodre, Karl‐Erich Lindenschmidt
Journal of Environmental Management, Volume 231

Water quality is increasingly at risk due to nutrient pollution entering river systems from cities, industrial zones and agricultural areas. Agricultural activities are typically the largest non-point source of water pollution. The dynamics of agricultural impacts on water quality are complex and stem from the decisions and activities of multiple stakeholders, often with diverse business plans, values, and attitudes towards practices that can improve water quality. This study proposes a framework to understand and incorporate stakeholders' viewpoints into water quality modeling and management. The framework was applied to the Qu'Appelle River Basin, Saskatchewan, Canada. Q-methodology was used to understand viewpoints of stakeholders, namely agricultural producers (annual croppers, cattle producers, mixed farmers) and cottage owners, regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality, and to identify their preferred BMPs. A System Dynamics (SD) approach was employed to develop a transparent and user-friendly water quality model, SD-Qu'Appelle, to simulate nutrient loads in the region before and after implementation of stakeholder identified BMPs. The SD-Qu'Appelle was used in real-time engagement of stakeholders in model simulations to demonstrate and explore the potential effects of different BMPs in mitigating water pollution. Stakeholder perspectives were explored to understand the functionality and value of the SD-Qu'Appelle, preferred policies and potential barriers to BMP implementation on their land. Results show that although there are differences between viewpoints of stakeholders, they identified wetland restoration/retention, flow and erosion control, and relocation of corrals near creeks to sites more distant from waterways as the most effective BMPs for improving water quality. Economics was identified as a primary factor that causes agricultural producers to either accept or refuse the implementation of BMPs. Agricultural producers believe that incentives rather than regulations are the best policies for increasing the adoption of BMPs. Overall, stakeholders indicated the SD-Qu'Appelle had considerable value for water quality management and provided a set of recommendations to improve the model.

DOI bib
Vanadium and thallium exhibit biodilution in a northern river food web
Timothy D. Jardine, Lorne E. Doig, Paul D. Jones, Lalita Bharadwaj, Meghan Carr, Brett Tendler, Karl‐Erich Lindenschmidt
Chemosphere, Volume 233

Trophic transfer of contaminants dictates concentrations and potential toxic effects in top predators, yet biomagnification behaviour of many trace elements is poorly understood. We examined concentrations of vanadium and thallium, two globally-distributed and anthropogenically-enriched elements, in a food web of the Slave River, Northwest Territories, Canada. We found that tissue concentrations of both elements declined with increasing trophic position as measured by δ15N. Slopes of log [element] versus δ15N regressions were both negative, with a steeper slope for V (-0.369) compared with Tl (-0.099). These slopes correspond to declines of 94% with each step in the food chain for V and 54% with each step in the food chain for Tl. This biodilution behaviour for both elements meant that concentrations in fish were well below values considered to be of concern for the health of fish-eating consumers. Further study of these elements in food webs is needed to allow a fuller understanding of biomagnification patterns across a range of species and systems.

DOI bib
Radar Scatter Decomposition to Differentiate between Running Ice Accumulations and Intact Ice Covers along Rivers
Karl‐Erich Lindenschmidt, Zhaoqin Li
Remote Sensing, Volume 11, Issue 3

For ice-jam flood forecasting it is important to differentiate between intact ice covers and ice runs. Ice runs consist of long accumulations of rubble ice that stem from broken up ice covers or ice-jams that have released. A water wave generally travels ahead of the ice run at a faster celerity, arriving at the potentially high flood–risk area much sooner than the ice accumulation. Hence, a rapid detection of the ice run is necessary to lengthen response times for flood mitigation. Intact ice covers are stationary and hence are not an immediate threat to a downstream flood situation, allowing more time for flood preparedness. However, once ice accumulations are moving and potentially pose imminent impacts to flooding, flood response may have to switch from a mitigation to an evacuation mode of the flood management plan. Ice runs are generally observed, often by chance, through ground observations or airborne surveys. In this technical note, we introduce a novel method of differentiating ice runs from intact ice covers using imagery acquired from space-borne radar backscatter signals. The signals are decomposed into different scatter components—surface scattering, volume scattering and double-bounce—the ratios of one to another allow differentiation between intact and running ice. The method is demonstrated for the breakup season of spring 2018 along the Athabasca River, when an ice run shoved into an intact ice cover which led to some flooding in Fort McMurray, Alberta, Canada.

DOI bib
CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir
Karl‐Erich Lindenschmidt, Meghan Carr, Amir Sadeghian, L. A. Morales-Marín
Scientific Data, Volume 6, Issue 1

Abstract Dams are typically designed to serve as flood protection, provide water for irrigation, human and animal consumption, and harness hydropower. Despite these benefits, dam operations can have adverse effects on in-reservoir and downstream water temperature regimes, biogeochemical cycling and aquatic ecosystems. We present a water quality dataset of water withdrawal scenarios generated after implementing the 2D hydrodynamic and water quality model, CE-QUAL-W2. The scenarios explore how six water extraction scenarios, starting at 5 m above the reservoir bottom at the dam and increasing upward at 10 m intervals to 55 m, influence water quality in Lake Diefenbaker reservoir, Saskatchewan, Canada. The model simulates daily water temperature, dissolved oxygen, total phosphorus, phosphate as phosphorus, labile phosphorus, total nitrogen, nitrate as nitrogen, labile nitrogen, and ammonium at 87 horizontal segments and at 60 water depths during the 2011–2013 period. This dataset intends to facilitate a broader investigation of in-reservoir nutrient dynamics under dam operations, and to extend the understanding of reservoir nutrient dynamics globally.

DOI bib
Development of an Ice Jam Flood Forecasting System for the Lower Oder River—Requirements for Real-Time Predictions of Water, Ice and Sediment Transport
Karl‐Erich Lindenschmidt, Dirk Carstensen, Wolfgang Fröhlich, Bernd Hentschel, Stefan Iwicki, Michael Kögel, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Adam Łazarów, Helena Łoś, Włodzimierz Marszelewski, Tomasz Niedzielski, Marcin Nowak, Bogusław Pawłowski, Michael Roers, Stefan Schlaffer, Adam Weintrit
Water, Volume 11, Issue 1

Despite ubiquitous warming, the lower Oder River typically freezes over almost every year. Ice jams may occur during freeze-up and ice cover breakup phases, particularly in the middle and lower reaches of the river, with weirs and piers. The slush ice and ice blocks may accumulate to form ice jams, leading to backwater effects and substantial water level rise. The small bottom slope of the lower Oder and the tidal backflow from the Baltic Sea enhance the formation of ice jams during cold weather conditions, jeopardizing the dikes. Therefore, development of an ice jam flood forecasting system for the Oder River is much needed. This commentary presents selected results from an international workshop that took place in Wrocław (Poland) on 26–27 November 2018 that brought together an international team of experts to explore the requirements and research opportunities in the field of ice jam flood forecasting and risk assessment for the Oder River section along the German–Polish border. The workshop launched a platform for collaboration amongst Canadian, German and Polish scientists, government officials and water managers to pave a way forward for joint research focused on achieving the long-term goal of forecasting, assessing and mitigating ice jam impacts along the lower Oder. German and Polish government agencies are in need of new tools to forecast ice jams and assess their subsequent consequences and risks to communities and ship navigation along a river. Addressing these issues will also help research and ice flood management in a Canadian context. A research program would aim to develop a modelling system by addressing fundamental issues that impede the prediction of ice jam events and their consequences in cold regions.

DOI bib
A novel stochastic modelling approach for operational real-time ice-jam flood forecasting
Karl‐Erich Lindenschmidt, Prabin Rokaya, Apurba Das, Zhaoqin Li, Dominique Richard
Journal of Hydrology, Volume 575

Abstract Forecasting ice jams and their consequential flooding is more challenging than predicting open water flood conditions. This is due to the chaotic nature of ice jam formation since slight changes in water and ice flows, location of the ice jam toe along the river and initial water levels at the time of jam formation can lead to marked differences in the outcome of backwater level elevations and flood severity. In this paper, we introduce a novel, operational real-time flood forecasting system that captures this stochastic nature of ice-jam floods and places the forecasts in a probabilistic context in the form of flood hazard maps (probability of flood extents and depths). This novel system was tested successfully for the ice-cover breakup period in the spring of 2018 along the Athabasca River at the Town of Fort McMurray, Canada.

DOI bib
A hydrological and water temperature modelling framework to simulate the timing of river freeze-up and ice-cover breakup in large-scale catchments
L. A. Morales-Marín, Palash Sanyal, H. Kadowaki, Zhaoqin Li, Prabin Rokaya, Karl‐Erich Lindenschmidt
Environmental Modelling & Software, Volume 114

Abstract Ice phenology, defined as the timing of freeze-up and ice-cover breakup, plays a key role in streamflow regimes in cold-region river catchments. River freeze-up and ice-cover breakup events are controlled by meteorological and hydrological variables. In this study, we present a modelling framework consisting of a physically-based semi-distributed hydrological model and the integration of a 1D stream temperature model that can predict the ice duration in cold region rivers. The hydrological model provides streamflow and hydraulic parameters for the stream temperature model to obtain instream water temperature. The model was successfully applied in the Athabasca River basin in western Canada. Calibration was carried out using the water temperature recorded in the stations at the towns of Hinton, Athabasca and Fort McMurray. Model results show consistent correspondence between simulated freeze-up and breakup dates and the hydrometric station data. In the main tributaries of the basin, freeze-up timing spans from the last week of September to the second week of November and ice-cover breakup occurs from the second week of March to the last week of May. The model presents an application of water temperature and ice phenology simulation which can be incorporated in ice-jam flood forecasting and future climate change studies.

DOI bib
Modelling the effects of climate and flow regulation on ice‐affected backwater staging in a large northern river
Prabin Rokaya, Daniel L. Peters, Barrie Bonsal, H. S. Wheater, Karl‐Erich Lindenschmidt
River Research and Applications

In cold region environments, ice‐jam floods (IJFs) pose a severe risk to local communities, economies, and ecosystems. Previous studies have shown that both climate and regulation affect IJF probabilities, but their relative impacts are poorly understood. This study presents a probabilistic modelling framework that couples hydrologic and hydraulic models to assess the relative role of regulated and naturalized flows on ice‐affected backwater staging. The framework is evaluated at an IJF‐prone town on the Peace River in western Canada, which has been regulated since 1972. Naturalized flows were generated for the comparison, and ice‐affected backwater profiles were calculated along jams of varying length and location and for different combinations of model parameters and boundary conditions. Results show significant differences in backwater staging (~2 m for a return period of T = 1:10 year) between two study time periods (1973–1992 vs 1993–2012) as compared with two different hydraulic flow conditions (regulated vs naturalized), suggesting a larger role of climate than regulation in backwater staging. However, regulation was found to offset flood risk during the 1973–1992 period and exacerbate flood risk during the 1993–2012 period.

DOI bib
Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change
L. A. Morales-Marín, Prabin Rokaya, Palash Sanyal, Jeff Sereda, Karl‐Erich Lindenschmidt
Ecological Modelling, Volume 407

• A physically-based semi-distributed hydrological model and a 1D stream water temperature model forced by climate change scenarios is presented here to analyze the effects of stream flow and water temperature changes on fish habitat in the Athabasca River catchment. • Streamflow decreases in most of the catchment will reduce flow velocities and water depths causing current Athabasca Rainbow Trout habitat to be suboptimal. • Increases in water temperature will result in habitat contraction concentrating Athabasca Rainbow Trout in the upper headwaters of the catchment. • Athabasca Rainbow Trout habitat can potentially be reduced as the frequency of occurrence of life threatening and lethal water temperatures tend to increase, particularly in summer. Changes to natural flow and air temperature in the context of climate change can have impacts on physiology, distribution and survival of fish. Of particular interest is the Athabasca River basin, a highly biologically productive basin that includes one of the largest boreal freshwater inland river deltas in the world and serves as habitat for many fish species. Earlier melt events, higher winter and spring flows and lower summer flows are expected as a consequence of climate change in this basin. Here, we model changes in river flow and water temperature under changing climate scenarios through the integration of a physically-based semi-distributed hydrological model and a 1D stream water temperature model forced by climate change scenarios. The modeled changes in streamflow and water temperature are used to predict changes in habitat suitability for the Athabasca Rainbow Trout (ART) ( Oncorhynchus mykiss ), a unique ecotype of trout considered as a ‘species at risk’. The results indicate that future flow decreases in most of the basin can lead to reduced flow velocities and water depths making current ART habitat suboptimal. Also, warming low-land habitats and increasing water temperatures will increase metabolic rates and stress fish forcing them to migrate upstream to cooler waters confining their habitat range.

DOI bib
Correlation among parameters and boundary conditions in river ice models
Prabin Rokaya, Karl‐Erich Lindenschmidt
Modeling Earth Systems and Environment, Volume 6, Issue 1

In river ice modelling, deterministic river ice models are often embedded into a Monte-Carlo framework to generate ensembles of backwater staging for jams of varying length and location, and for different combinations of model parameters and boundary conditions. In this approach, values for parameters and boundary conditions are usually sampled independently (of each other) from their probability distributions. However, many of the parameters and boundary conditions are interdependent and thus warrant sampling methods that consider correlation effects. But, such correlation studies have not been previously conducted for river ice models, which is the main motivation for this study. A review of literature was performed to compile data from more than 40 different ice-jam case studies from 24 ice-jam prone locations in Canada and the United States. Then correlations among parameters and boundary conditions in three commonly used river ice models were investigated. The results show that the model parameters in river ice models are ice-jam centric and have varying degrees of correlations, but boundary conditions are independent of each other and, instead, have potentially stronger ties to catchment characteristics, fluvial geomorphology and meteorological conditions. The findings of this study provide important insights in understanding and improving parameterization, calibration and ensemble modelling of river ice models.

DOI bib
Climatic effects on ice phenology and ice-jam flooding of the Athabasca River in western Canada
Prabin Rokaya, L. A. Morales-Marín, Barrie Bonsal, H. S. Wheater, Karl‐Erich Lindenschmidt
Hydrological Sciences Journal, Volume 64, Issue 11

ABSTRACTIn cold region environments, any alteration in the hydro-climatic regime can have profound impacts on river ice processes. This paper studies the implications of hydro-climatic trends on ri...

DOI bib
Promoting Sustainable Ice-Jam Flood Management along the Peace River and Peace-Athabasca Delta
Prabin Rokaya, H. S. Wheater, Karl‐Erich Lindenschmidt
Journal of Water Resources Planning and Management, Volume 145, Issue 1

AbstractThe regulation of rivers has always been a controversial issue, with potential benefits but also environmental impacts. In western Canada, the construction of W.A.C. Bennett Dam in the head...

2018

DOI bib
Co-design of water services and infrastructure for Indigenous Canada: A scoping review
Lori Bradford, Timothy Vogel, Karl‐Erich Lindenschmidt, Kerry N. McPhedran, Graham Strickert, Terrance A. Fonstad, Lalita Bharadwaj
FACETS, Volume 3, Issue 1

There is movement in engineering fields and in Indigenous communities for enhancement of local participation in the design of community infrastructure. Inclusion of community priorities and unique cultural, spiritual, and traditional values harmonize the appearance, location, and functionality of developments with the social and cultural context in which they are built and contribute to holistic wellness. However, co-design processes that align community values and the technical needs of water facilities are difficult to find. A scoping review was conducted to explore the state of knowledge on co-design of water infrastructure in Indigenous Canada to build a knowledge base from which practices and processes could emerge. The scoping results revealed that articles and reports emerged only in recent years, contained case studies and meta-reviews with primary (qualitative) data, and involved community members in various capacities. Overall, 13 articles were reviewed that contributed to understanding co-design for water infrastructure in Indigenous Canada. Barriers to co-design included funding models for Indigenous community infrastructure, difficulties in engineers and designers understanding Indigenous worldviews and paradigms, and a lack of cooperation among stakeholders that contribute to ongoing design failures. A working definition of co-design for Indigenous water infrastructure is presented.

DOI bib
Sustainable Ice-Jam Flood Management for Socio-Economic and Socio-Ecological Systems
Apurba Das, Maureen G. Reed, Karl‐Erich Lindenschmidt
Water, Volume 10, Issue 2

Ice jams are critical components of the hydraulic regimes of rivers in cold regions. In addition to contributing to the maintenance of wetland ecology, including aquatic animals and waterfowl, ice jams provide essential moisture and nutrient replenishment to perched lakes and ponds in northern inland deltas. However, river ice-jam flooding can have detrimental impacts on in-stream aquatic ecosystems, cause damage to property and infrastructure, and present hazards to riverside communities. In order to maintain sustainable communities and ecosystems, ice-jam flooding must be both mitigated and promoted. This study reviews various flood management strategies used worldwide, and points to the knowledge gaps in these strategies. The main objective of the paper is to provide a framework for a sustainable ice-jam flood management strategy in order to better protect riverine socio-economic and socio-ecological systems. Sustainable flood management must be a carefully adopted and integrated strategy that includes both economic and ecological perspectives in order to mitigate ice-jam flooding in riverside socio-economic systems, while at the same time promoting ice-jam flooding of riverine socio-ecological systems such as inland deltas.

DOI bib
Coherence of Radarsat-2, Sentinel-1, and ALOS-1 PALSAR for monitoring spatiotemporal variations of river ice covers
Zhaoqin Li, Karl‐Erich Lindenschmidt
Canadian Journal of Remote Sensing, Volume 44, Issue 1

Monitoring spatiotemporal variations of river ice covers is critical for selecting safe ice transportation routes. The coherence of synthetic aperture radar (SAR) interferometry (InSAR) conveys imp...

DOI bib
Monitoring river ice cover development using the Freeman–Durden decomposition of quad-pol Radarsat-2 images
Karl‐Erich Lindenschmidt, Zhaoqin Li
Journal of Applied Remote Sensing, Volume 12, Issue 02

The monitoring of river ice development is a crucial guidance indicator to establish safe crossings along river ice covers. This is the first study, based on our knowledge, to understand the interactions between river ice cover structures and radar signals and to further monitor ice development using C-band synthetic aperture radar images. The study was applied to the Slave River, Canada, using the Freeman–Durden decomposition of quad-pol C-band Radarsat-2 FQ14W images and ice core crystallography analysis. Results demonstrate that the combination of volume and surface scattering can be used to monitor ice cover development that cannot be interpreted from single polarization images, such as Radarsat-2 spotlight images used in this study. These results indicate that the decomposed quad-pol Radarsat-2 images can provide a more effective guide than the single-pol Radarsat-2 SLA images to select safe ice transportation routes. This decomposition approach can be extended to other snow and ice covered rivers.

DOI bib
Trends in the Timing and Magnitude of Ice-Jam Floods in Canada
Prabin Rokaya, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Scientific Reports, Volume 8, Issue 1

Ice-jam floods (IJFs) are important hydrological and hydraulic events in the northern hemisphere that are of major concern for citizens, authorities, insurance companies and government agencies. In recent years, there have been advances in assessing and quantifying climate change impacts on river ice processes, however, an understanding of climate change and regulation impacts on the timing and magnitude of IJFs remains limited. This study presents a global overview of IJF case studies and discusses IJF risks in North America, one of the most IJF prone regions according to literature. Then an assessment of shifts in the timing and magnitude of IJFs in Canada is presented analyzing flow data from 1107 hydrometric stations across Canada for the period from 1903 to 2015. The analyses show clear signals of climate change and regulation impacts in the timing and magnitude of IJFs, particularly in small basins.

DOI bib
Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios
L. A. Morales-Marín, H. S. Wheater, Karl‐Erich Lindenschmidt
Water, Volume 10, Issue 10

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.

DOI bib
Ice-jam flood research: a scoping review
Prabin Rokaya, Sujata Budhathoki, Karl‐Erich Lindenschmidt
Natural Hazards, Volume 94, Issue 3

Almost 60% of the rivers in the northern hemisphere experience significant seasonal effects of river ice. In many of these northern rivers, ice-jam floods (IJFs) pose serious threats to riverine communities. Since the inundation elevations associated with ice-jam events can be several meters higher than open-water floods for the same or even lower discharges, IJFs can be more disastrous to local communities and economies, especially as their occurrence is often very sudden and difficult to anticipate. In the last several decades, there have been many important advances in river ice hydrology, resulting in improved knowledge and capacity to deal with IJFs. This paper presents a review of IJF literature available on the Web of Science. Nature and scope of scholarly research on IJF are analysed, and an agenda for research that better integrates IJF challenges with research and mitigation opportunities is suggested.

DOI bib
Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios
Amir Sadeghian, Steven C. Chapra, Jeff J. Hudson, H. S. Wheater, Karl‐Erich Lindenschmidt
Environmental Modelling & Software, Volume 101

Abstract Algal simulations in many water quality models perform poorly because of oversimplifications in the process descriptions of the algae growth mechanisms. In this study, algae simulations were improved by implementing variable chlorophyll a/algal biomass ratios in the CE-QUAL-W2 model, a sophisticated two-dimensional laterally-averaged water quality model. Originally a constant in the model, the chlorophyll a/algal biomass ratio was reprogrammed to vary according to the nutrient and light limiting conditions in the water column. The modified model was tested on Lake Diefenbaker, a prairie reservoir in Saskatchewan, Canada, where, similar to many other lakes in the world, field observations confirm variable spatiotemporal ratios between chlorophyll a and algal biomass. The modified version yielded more accurate simulations compared to the standard version and provides a promising algorithm to improve results for many lakes and reservoirs globally.

2017

DOI bib
RADARSAT-2-based digital elevation models derived from InSAR for high latitudes of northern Canada
Thuan Chu, Apurba Das, Karl‐Erich Lindenschmidt
Journal of Applied Remote Sensing, Volume 11, Issue 03

The accuracy of digital elevation models (DEMs) plays an important role in many terrain-related applications, particular in high northern latitudes where there is uncertainty in DEMs. Using the interferometric synthetic aperture radar techniques, this study examined how different RADARSAT-2 beam modes can be used to generate DEMs with high accuracy. Using a conventional interferometry method, the Spotlight DEM shows the highest accuracy among all studied DEM products, with the root-mean-square error (RMSE) ranging from 13.9 to 17.4 m, followed by the F0W3 DEM and U26W2 DEM. The error sources in DEM generation due to uncertainty in perpendicular baseline and atmospheric delay are likely more important than the random phase noise caused by volume scattering and environmental changes during synthetic aperture radar (SAR) acquisitions. The small baselines subset (SBAS) method did not significantly improve DEM quality due to the limitation of the number of SAR images in this study. The integration of both Spotlight conventional DEMs and SBAS DEM considerably improved results yielding high-quality DEMs for the study area, with an RMSE of 9.7 m. Further studies are necessary to quantitatively evaluate the effects of surface motion as well as the orbital and atmospheric errors on the DEM accuracy. The Slave River Delta in the Northwest Territories of Canada was used as a test case.

DOI bib
Estimating Sediment Loadings in the South Saskatchewan River Catchment
L. A. Morales-Marín, H. S. Wheater, Karl‐Erich Lindenschmidt
Water Resources Management, Volume 32, Issue 2

In river catchments, sediment fluxes facilitate the transport of nutrients and pollutants and reduce water quality, potentially impacting water body health and altering ecosystem functioning. Sediment transport processes also modify the morphology of catchments, and sediment deposition can reduce flow capacity in rivers and water storage capacity in reservoirs and lakes. In this paper, estimates of suspended sediment yields and concentrations in the South Saskatchewan River catchment located in western Canada are presented. The results stem from a SPARROW model, which indicates that the dominant sources of sediment are represented by agricultural fields and urbanized lands. Analyses of sediment retention in the major catchment reservoirs indicate that, as expected, reservoir storage capacity is negatively correlated with reservoir storage reduction and positively correlated with retention rate. Additionally, reservoir lifespans range from less than 100 years to over 9000 years. The results presented here will be useful to complement local environmental guidelines to allow better management of sediment erosion and deposition in the South Saskatchewan River catchment.

DOI bib
Sediment plume model—a comparison between use of measured turbidity data and satellite images for model calibration
Amir Sadeghian, Jeff J. Hudson, H. S. Wheater, Karl‐Erich Lindenschmidt
Environmental Science and Pollution Research, Volume 24, Issue 24

In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m3/s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

DOI bib
Improved Understanding of River Ice Processes Using Global Sensitivity Analysis Approaches
Razi Sheikholeslami, Fuad Yassin, Karl‐Erich Lindenschmidt, Saman Razavi
Journal of Hydrologic Engineering, Volume 22, Issue 11

AbstractThe high impact of river ice phenomena on the hydrology of cold regions has led to the extensive use of numerical models in simulating and predicting river ice processes. Consequently, ther...
Search
Co-authors
Venues