Kayvan Yavari


2022

DOI bib
Critical evaluation of aptamer binding for biosensor designs
Yichen Zhao, Kayvan Yavari, Juewen Liu
TrAC Trends in Analytical Chemistry, Volume 146

Over the last three decades, numerous aptamer-based biosensors have been reported. The basis of these sensors is the selective binding of target analytes by aptamers. In the last few years, a number of papers have been published questioning the binding ability of some popular aptamers such as those documented for As(III), ampicillin, chloramphenicol, isocarbophos, phorate and dopamine. In this article, these papers are reviewed, and the binding assays are described, which may provide possible reasons for obtaining false positive aptamers. Additionally, relevant aptamer selection methods and typical characterization steps are described. It is found that for small molecular targets, using an immobilized library might result in better aptamers. Furthermore, the importance of carefully designed controls to ensure the quality of binding assays is discussed, especially in the case of mutated nonbinding aptamers. Only then, with fully validated aptamers, can subsequent biosensor design bring about meaningful results. • The first critical review of the literature on aptamers that were proven to be non-binding sequences. • Five different aptamers for various small molecules reviewed. • Possible reasons for the generation of such non-binding aptamer sequences proposed and methods to avoid them described.

DOI bib
Deployment of functional DNA-based biosensors for environmental water analysis
Yichen Zhao, Kayvan Yavari, Yihao Wang, Kunfu Pi, Philippe Van Cappellen, Juewen Liu
TrAC Trends in Analytical Chemistry, Volume 153

Various functional DNA molecules have been used for the detection of environmental contaminants in water, but their practical applications have been limited. To address this gap, this review highlights the efforts to develop field-deployable water quality biosensors. The biosensor devices include microfluidic, lateral flow and paper-based devices, and other novel ideas such as the conversion of glucometers for the detection of environmental analytes. In addition, we also review DNA-functionalized hydrogels and their use in diffusive gradients in thin films (DGT) devices. We classify the sensors into one-step and two-step assays and discuss their practical implications. While the review is focused on works reported in the last five years, some classic early works are cited as well. Overall, most of the existing work only tested spiked water samples. Future work needs to shift to real environmental samples and the comparison of DNA-based sensors to standard analytical methods. • Recent development in field-deployable functional DNA based biosensors for environmental water monitoring reviewed. • Articulated the concept of one-step and two-step assays. • Microfluidic device, lateral flow device, paper, hydrogel, and glucose meter based examples reviewed.