Keegan A. Hicks


2023

DOI bib
Intersex manifestation in the rainbow darter (Etheostoma caeruleum): Are adult male fish susceptible to developing and recovering from intersex after exposure to endocrine active compounds?
Keegan A. Hicks, Meghan Fuzzen, Hadi A. Dhiyebi, Leslie M. Bragg, Patricija Marjan, Jessie Cunningham, Mark E. McMaster, Nivetha Srikanthan, Kirsten E. Nikel, Maricor J. Arlos, Mark R. Servos, Keegan A. Hicks, Meghan Fuzzen, Hadi A. Dhiyebi, Leslie M. Bragg, Patricija Marjan, Jessie Cunningham, Mark E. McMaster, Nivetha Srikanthan, Kirsten E. Nikel, Maricor J. Arlos, Mark R. Servos
Aquatic Toxicology, Volume 261

For over a decade, intersex has been observed in rainbow darter (RD) (Etheostoma caeruleum) populations living downstream wastewater treatment plants (WWTPs) in the Grand River, Ontario, Canada. To further our understanding of intersex development in adult male fish, the current study addressed three objectives: i) can intersex be induced in adult male fish, ii) is there a specific window of exposure when adult male fish are more susceptible to developing intersex, and iii) can pre-exposed adult male fish recover from intersex? To assess intersex induction in adult male fish, wild male RD were exposed in the laboratory for 22 weeks (during periods of spawning, gonadal regression, and gonadal recrudescence) to environmentally relevant concentrations of 17α-ethinylestradiol (EE2) including nominal 0, 1, and 10 ng/L. Intersex rates and severity at 10 ng/L EE2 were similar to those observed historically in adult male populations living downstream WWTPs in the Grand River and confirmed previous predictions that 1–10 ng/L EE2 would cause these adverse effects. To assess a window of sensitivity in developing intersex, male RD were exposed to nominal 0, 1 or 10 ng/L EE2 for 4 weeks during three different periods of gonadal development, including (i) spawning, (ii) early recrudescence and (iii) late recrudescence. These short-term exposures revealed that intersex incidence and severity were greater when RD were exposed while gonads were fully developed (during spawning) compared to periods of recrudescence. To assess if RD recover from intersex, wild fish were collected downstream WWTPs in the Grand River and assessed for intersex both before and after a 22-week recovery period in clean water that included gonadal regression and recrudescence. Results showed that fish did not recover from intersex, with intersex rates and severity similar to those both before and after the transition to clean water. This study further advances our knowledge on intersex manifestation in adult male fish including their sensitivity to endocrine active compounds during different periods of their annual reproductive cycle and their limited ability to recover from intersex after onset of the condition.

DOI bib
Intersex manifestation in the rainbow darter (Etheostoma caeruleum): Are adult male fish susceptible to developing and recovering from intersex after exposure to endocrine active compounds?
Keegan A. Hicks, Meghan Fuzzen, Hadi A. Dhiyebi, Leslie M. Bragg, Patricija Marjan, Jessie Cunningham, Mark E. McMaster, Nivetha Srikanthan, Kirsten E. Nikel, Maricor J. Arlos, Mark R. Servos, Keegan A. Hicks, Meghan Fuzzen, Hadi A. Dhiyebi, Leslie M. Bragg, Patricija Marjan, Jessie Cunningham, Mark E. McMaster, Nivetha Srikanthan, Kirsten E. Nikel, Maricor J. Arlos, Mark R. Servos
Aquatic Toxicology, Volume 261

For over a decade, intersex has been observed in rainbow darter (RD) (Etheostoma caeruleum) populations living downstream wastewater treatment plants (WWTPs) in the Grand River, Ontario, Canada. To further our understanding of intersex development in adult male fish, the current study addressed three objectives: i) can intersex be induced in adult male fish, ii) is there a specific window of exposure when adult male fish are more susceptible to developing intersex, and iii) can pre-exposed adult male fish recover from intersex? To assess intersex induction in adult male fish, wild male RD were exposed in the laboratory for 22 weeks (during periods of spawning, gonadal regression, and gonadal recrudescence) to environmentally relevant concentrations of 17α-ethinylestradiol (EE2) including nominal 0, 1, and 10 ng/L. Intersex rates and severity at 10 ng/L EE2 were similar to those observed historically in adult male populations living downstream WWTPs in the Grand River and confirmed previous predictions that 1–10 ng/L EE2 would cause these adverse effects. To assess a window of sensitivity in developing intersex, male RD were exposed to nominal 0, 1 or 10 ng/L EE2 for 4 weeks during three different periods of gonadal development, including (i) spawning, (ii) early recrudescence and (iii) late recrudescence. These short-term exposures revealed that intersex incidence and severity were greater when RD were exposed while gonads were fully developed (during spawning) compared to periods of recrudescence. To assess if RD recover from intersex, wild fish were collected downstream WWTPs in the Grand River and assessed for intersex both before and after a 22-week recovery period in clean water that included gonadal regression and recrudescence. Results showed that fish did not recover from intersex, with intersex rates and severity similar to those both before and after the transition to clean water. This study further advances our knowledge on intersex manifestation in adult male fish including their sensitivity to endocrine active compounds during different periods of their annual reproductive cycle and their limited ability to recover from intersex after onset of the condition.

DOI bib
Wild fish responses to wastewater treatment plant upgrades in the Grand River, Ontario
Kirsten E. Nikel, Gerald R. Tetreault, Patricija Marjan, Keegan A. Hicks, Meghan Fuzzen, Nivetha Srikanthan, Emily K. McCann, Hadi A. Dhiyebi, Leslie M. Bragg, Pam Law, Dominika Celmer‐Repin, Sonya Kleywegt, Jessie Cunningham, Thomas Clark, Mark E. McMaster, Mark R. Servos, Kirsten E. Nikel, Gerald R. Tetreault, Patricija Marjan, Keegan A. Hicks, Meghan Fuzzen, Nivetha Srikanthan, Emily K. McCann, Hadi A. Dhiyebi, Leslie M. Bragg, Pam Law, Dominika Celmer‐Repin, Sonya Kleywegt, Jessie Cunningham, Thomas Clark, Mark E. McMaster, Mark R. Servos
Aquatic Toxicology, Volume 255

Municipal wastewater treatment plant (WWTP) effluent is one of several point sources of contaminants (nutrients, pharmaceuticals, estrogens, etc.) which can lead to adverse responses in aquatic life. Studies of WWTP effluent impacts on rainbow darter (Etheostoma caeruleum) collected downstream of WWTPs in the Grand River, Ontario have reported disruption at multiple levels of biological organization, including altered vitellogenin gene expression, lower levels of in vitro steroid production, and high frequency of intersex. However, major upgrades have occurred at treatment plants in the central Grand River over the last decade. Treatment upgrades to the Waterloo WWTP were initiated in 2009 but due to construction delays, the upgrades came fully on-line in 2017/2018. Responses in rainbow darter have been followed at sites associated with the outfall consistently over this entire time period. The treatment plant upgrade resulted in nitrification of effluent, and once complete there was a major reduction in effluent ammonia, selected pharmaceuticals, and estrogenicity. This study compared several key responses in rainbow darter associated with the Waterloo WWTP outfall prior to and post upgrades. Stable isotopes signatures in fish were used to track exposure to effluent and changed dramatically over time, corresponding to the effluent quality. Disruptions in in vitro steroid production and intersex in the darters that had been identified prior to the upgrades were no longer statistically different from the upstream reference sites after the upgrades. Although annual variations in water temperature and flow can potentially mask or exacerbate the effects of the WWTP effluent, major capital investments in wastewater treatment targeted at improving effluent quality have corresponded with the reduction of adverse responses in fish in the receiving environment.

DOI bib
Wild fish responses to wastewater treatment plant upgrades in the Grand River, Ontario
Kirsten E. Nikel, Gerald R. Tetreault, Patricija Marjan, Keegan A. Hicks, Meghan Fuzzen, Nivetha Srikanthan, Emily K. McCann, Hadi A. Dhiyebi, Leslie M. Bragg, Pam Law, Dominika Celmer‐Repin, Sonya Kleywegt, Jessie Cunningham, Thomas Clark, Mark E. McMaster, Mark R. Servos, Kirsten E. Nikel, Gerald R. Tetreault, Patricija Marjan, Keegan A. Hicks, Meghan Fuzzen, Nivetha Srikanthan, Emily K. McCann, Hadi A. Dhiyebi, Leslie M. Bragg, Pam Law, Dominika Celmer‐Repin, Sonya Kleywegt, Jessie Cunningham, Thomas Clark, Mark E. McMaster, Mark R. Servos
Aquatic Toxicology, Volume 255

Municipal wastewater treatment plant (WWTP) effluent is one of several point sources of contaminants (nutrients, pharmaceuticals, estrogens, etc.) which can lead to adverse responses in aquatic life. Studies of WWTP effluent impacts on rainbow darter (Etheostoma caeruleum) collected downstream of WWTPs in the Grand River, Ontario have reported disruption at multiple levels of biological organization, including altered vitellogenin gene expression, lower levels of in vitro steroid production, and high frequency of intersex. However, major upgrades have occurred at treatment plants in the central Grand River over the last decade. Treatment upgrades to the Waterloo WWTP were initiated in 2009 but due to construction delays, the upgrades came fully on-line in 2017/2018. Responses in rainbow darter have been followed at sites associated with the outfall consistently over this entire time period. The treatment plant upgrade resulted in nitrification of effluent, and once complete there was a major reduction in effluent ammonia, selected pharmaceuticals, and estrogenicity. This study compared several key responses in rainbow darter associated with the Waterloo WWTP outfall prior to and post upgrades. Stable isotopes signatures in fish were used to track exposure to effluent and changed dramatically over time, corresponding to the effluent quality. Disruptions in in vitro steroid production and intersex in the darters that had been identified prior to the upgrades were no longer statistically different from the upstream reference sites after the upgrades. Although annual variations in water temperature and flow can potentially mask or exacerbate the effects of the WWTP effluent, major capital investments in wastewater treatment targeted at improving effluent quality have corresponded with the reduction of adverse responses in fish in the receiving environment.

2018

DOI bib
Modeling the exposure of wild fish to endocrine active chemicals: Potential linkages of total estrogenicity to field-observed intersex
Maricor J. Arlos, Wayne J. Parker, José R. Bicudo, Pam Law, Keegan A. Hicks, Meghan Fuzzen, Susan A. Andrews, Mark R. Servos
Water Research, Volume 139

Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure. Concentrations of the prominent estrogenic contaminants in wastewaters (estrone, estradiol, and ethinylestradiol) were simulated in the Grand River in southern Ontario (Canada) for nine years, including a period when major WWTP upgrades occurred. The predicted concentrations expressed as total estrogenicity (E2 equivalent concentrations) were contrasted to a key estrogenic response (i.e., intersex) in rainbow darter (Etheostoma caeruleum), a wild sentinel fish species. A predicted total estrogenicity in the river of ≥10 ng/L E2 equivalents was associated with high intersex incidence and severity, whereas concentrations <0.1 ng/L E2 equivalents were associated with minimal intersex expression. Exposure to a predicted river concentration of 0.4 ng/L E2 equivalents, the environmental quality standard (EQS) proposed by the European Union for estradiol, was associated with 34% (95% CI:30-38) intersex incidence and a very low severity score of 0.6 (95% CI:0.5-0.7). This exposure is not predicted to cause adverse effects in rainbow darter. The analyses completed in this study were only based on the predicted presence of three major estrogens (E1, E2, EE2), so caution must be exercised when interpreting the results. Nevertheless, this study illustrates the use of models for exposure assessment, especially when measured data are not available.

2017

DOI bib
Reduction of Intersex in a Wild Fish Population in Response to Major Municipal Wastewater Treatment Plant Upgrades
Keegan A. Hicks, Meghan Fuzzen, Emily K. McCann, Maricor J. Arlos, Leslie M. Bragg, Sonya Kleywegt, Gerald R. Tetreault, Mark E. McMaster, Mark R. Servos
Environmental Science & Technology, Volume 51, Issue 3

Intersex in fish downstream of municipal wastewater treatment plants (MWWTPs) is a global concern. Consistent high rates of intersex in male rainbow darter (Etheostoma caeruleum) have been reported for several years in the Grand River, in southern Ontario, Canada, in close proximity to two MWWTPs. The larger MWWTP (Kitchener) recently underwent upgrades that included the conversion from a carbonaceous activated sludge to nitrifying activated sludge treatment process. This created a unique opportunity to assess whether upgrades designed to improve effluent quality could also remediate the intersex previously observed in wild fish. Multiple years (2007-2012) of intersex data on male rainbow darter collected before the upgrades at sites associated with the MWWTP outfall were compared with intersex data collected in postupgrade years (2013-2015). These upgrades resulted in a reduction from 70 to 100% intersex incidence (preupgrade) to <10% in postupgrade years. Although the cause of intersex remains unknown, indicators of effluent quality including nutrients, pharmaceuticals, and estrogenicity improved in the effluent after the upgrades. This study demonstrated that investment in MWWTP upgrades improved effluent quality and was associated with an immediate change in biological responses in the receiving environment. This is an important finding considering the tremendous cost of wastewater infrastructure.