Kelly Hokanson
2019
Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying
Nicholas Kettridge,
Max Lukenbach,
Kelly Hokanson,
K. J. Devito,
Richard M. Petrone,
Carl Mendoza,
J. M. Waddington
Scientific Reports, Volume 9, Issue 1
The potential of high severity wildfires to increase global terrestrial carbon emissions and exacerbate future climatic warming is of international concern. Nowhere is this more prevalent than within high latitude regions where peatlands have, over millennia, accumulated legacy carbon stocks comparable to all human CO2 emissions since the beginning of the industrial revolution. Drying increases rates of peat decomposition and associated atmospheric and aquatic carbon emissions. The degree to which severe wildfires enhance drying under future climates and induce instability in peatland ecological communities and carbon stocks is unknown. Here we show that high burn severities increased post-fire evapotranspiration by 410% within a feather moss peatland by burning through the protective capping layer that restricts evaporative drying in response to low severity burns. High burn severities projected under future climates will therefore leave peatlands that dominate dry sub-humid regions across the boreal, on the edge of their climatic envelopes, more vulnerable to intense post-fire drying, inducing high rates of carbon loss to the atmosphere that amplify the direct combustion emissions.
2018
A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots
Kelly Hokanson,
Paul A. Moore,
Max Lukenbach,
K. J. Devito,
Nicholas Kettridge,
R. M. Petrone,
Carl Mendoza,
J. M. Waddington
Ecohydrology, Volume 11, Issue 4
Northern peatlands are important global carbon stores, but there is concern that these boreal peat reserves are at risk due to increased fire frequency and severity as predicted by climate change models. In a subhumid climate, hydrogeological position is an important control on peatland hydrology and wildfire vulnerability. Consequently, we hypothesized that in a coarse‐textured glaciofluvial outwash, isolated peatlands lacking the moderating effect of large‐scale groundwater flow would have greater water table (WT) variability and would also be more vulnerable to deep WT drawdown and wildfire during dry climate cycles. A holistic approach was taken to evaluate 3 well‐accepted factors that are associated with smouldering in boreal peatlands: hollow microform coverage, peatland margin morphometry, and gravimetric water content. Using a combination of field measurements (bulk density, humification, WT position, hummock–hollow distribution, and margin width) and modelling (1‐D vertical unsaturated flow coupled with a simple peat–fuel energy balance equation), we assessed the vulnerability of peat to smouldering. We found that a peatland in the regionally intermediate topographic position is the most vulnerable to smouldering due to the interaction of variable connectivity to large‐scale groundwater flow and the absence of mineral stratigraphy for limiting WT declines during dry conditions. Our findings represent a novel assessment framework and tool for fire managers by providing a priori knowledge of potential peat smouldering hot spot locations in the landscape to efficiently allocate resources and reduce emergency response time to smouldering events.
Search
Co-authors
- Nicholas Kettridge 2
- Max Lukenbach 2
- K. J. Devito 2
- Carl Mendoza 2
- J. M. Waddington 2
- show all...
Venues
- GWF2