2019
DOI
bib
abs
A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology
Ronald E. Stewart,
Kit K. Szeto,
Barrie Bonsal,
John Hanesiak,
Bohdan Kochtubajda,
Yanping Li,
Julie M. Thériault,
C. M. DeBeer,
Benita Y. Tam,
Zhenhua Li,
Zhuo Liu,
Jennifer Bruneau,
Sébastien Marinier,
Dominic Matte
Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart,
Kit K. Szeto,
Barrie Bonsal,
John Hanesiak,
Bohdan Kochtubajda,
Yanping Li,
Julie M. Thériault,
C. M. DeBeer,
Benita Y. Tam,
Zhenhua Li,
Zhuo Liu,
Jennifer Bruneau,
Patrick Duplessis,
Sébastien Marinier,
Dominic Matte
Hydrology and Earth System Sciences, Volume 23, Issue 8
Abstract. The interior of western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere, and ecosystems, and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing mainly “business-as-usual” climate scenario information. Large-scale atmospheric circulations affecting this region are projected to shift differently in each season, with conditions that are conducive to the development of hydroclimate extremes in the domain becoming substantially more intense and frequent after the mid-century. When coupled with warming temperatures, changes in the large-scale atmospheric drivers lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.
2017
DOI
bib
abs
A Numerical Study of the June 2013 Flood-Producing Extreme Rainstorm over Southern Alberta
Yanping Li,
Kit K. Szeto,
Ronald E. Stewart,
Julie M. Thériault,
Liang Chen,
Bohdan Kochtubajda,
Anthony Liu,
Sudesh Boodoo,
Ron Goodson,
Curtis Mooney,
Sopan Kurkute
Journal of Hydrometeorology, Volume 18, Issue 8
Abstract A devastating, flood-producing rainstorm occurred over southern Alberta, Canada, from 19 to 22 June 2013. The long-lived, heavy rainfall event was a result of complex interplays between topographic, synoptic, and convective processes that rendered an accurate simulation of this event a challenging task. In this study, the Weather Research and Forecasting (WRF) Model was used to simulate this event and was validated against several observation datasets. Both the timing and location of the model precipitation agree closely with the observations, indicating that the WRF Model is capable of reproducing this type of severe event. Sensitivity tests with different microphysics schemes were conducted and evaluated using equitable threat and bias frequency scores. The WRF double-moment 6-class microphysics scheme (WDM6) generally performed better when compared with other schemes. The application of a conventional convective/stratiform separation algorithm shows that convective activity was dominant during the early stages, then evolved into predominantly stratiform precipitation later in the event. The HYSPLIT back-trajectory analysis and regional water budget assessments using WRF simulation output suggest that the moisture for the precipitation was mainly from recycling antecedent soil moisture through evaporation and evapotranspiration over the Canadian Prairies and the U.S. Great Plains. This analysis also shows that a small fraction of the moisture can be traced back to the northeastern Pacific, and direct uptake from the Gulf of Mexico was not a significant source in this event.
2016
DOI
bib
abs
The June 2013 Alberta Catastrophic Flooding Event: Part 1-Climatological aspects and hydrometeorological features
Anling Liu,
Curtis Mooney,
Kit K. Szeto,
Julie M. Thériault,
Bohdan Kochtubajda,
Ronald E. Stewart,
Sudesh Boodoo,
Ron Goodson,
Yanping Li,
John W. Pomeroy
Hydrological Processes, Volume 30, Issue 26
In June 2013, excessive rainfall associated with an intense weather system triggered severe flooding in southern Alberta, which became the costliest natural disaster in Canadian history. This article provides an overview of the climatological aspects and large-scale hydrometeorological features associated with the flooding event based upon information from a variety of sources, including satellite data, upper air soundings, surface observations and operational model analyses. The results show that multiple factors combined to create this unusually severe event. The event was characterized by a slow-moving upper level low pressure system west of Alberta, blocked by an upper level ridge, while an associated well-organized surface low pressure system kept southern Alberta, especially the eastern slopes of the Rocky Mountains, in continuous precipitation for up to two days. Results from air parcel trajectory analysis show that a significant amount of the moisture originated from the central Great Plains, transported into Alberta by a southeasterly low level jet. The event was first dominated by significant thunderstorm activity, and then evolved into continuous precipitation supported by the synoptic-scale low pressure system. Both the thunderstorm activity and upslope winds associated with the low pressure system produced large rainfall amounts. A comparison with previous similar events occurring in the same region suggests that the synoptic-scale features associated with the 2013 rainfall event were not particularly intense; however, its storm environment was the most convectively unstable. The system also exhibited a relatively high freezing level, which resulted in rain, rather than snow, mainly falling over the still snow-covered mountainous areas. Melting associated with this rain-on-snow scenario likely contributed to downstream flooding. Furthermore, above-normal snowfall in the preceding spring helped to maintain snow in the high-elevation areas, which facilitated the rain-on-snow event.