2023
DOI
bib
abs
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama,
Sara Knox,
Kyle Delwiche,
Sheel Bansal,
W. J. Riley,
Dennis Baldocchi,
Takashi Hirano,
Gavin McNicol,
K. V. Schäfer,
L. Windham‐Myers,
Benjamin Poulter,
Robert B. Jackson,
Kuang‐Yu Chang,
Jiquen Chen,
Housen Chu,
Ankur R. Desai,
Sébastien Gogo,
Hiroki Iwata,
Minseok Kang,
Ivan Mammarella,
Matthias Peichl,
Oliver Sonnentag,
Eeva‐Stiina Tuittila,
Youngryel Ryu,
E. S. Euskirchen,
Mathias Göckede,
Adrien Jacotot,
Mats B. Nilsson,
Torsten Sachs,
Masahito Ueyama,
Sara Knox,
Kyle Delwiche,
Sheel Bansal,
W. J. Riley,
Dennis Baldocchi,
Takashi Hirano,
Gavin McNicol,
K. V. Schäfer,
L. Windham‐Myers,
Benjamin Poulter,
Robert B. Jackson,
Kuang‐Yu Chang,
Jiquen Chen,
Housen Chu,
Ankur R. Desai,
Sébastien Gogo,
Hiroki Iwata,
Minseok Kang,
Ivan Mammarella,
Matthias Peichl,
Oliver Sonnentag,
Eeva‐Stiina Tuittila,
Youngryel Ryu,
E. S. Euskirchen,
Mathias Göckede,
Adrien Jacotot,
Mats B. Nilsson,
Torsten Sachs
Global Change Biology, Volume 29, Issue 8
Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.
DOI
bib
abs
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama,
Sara Knox,
Kyle Delwiche,
Sheel Bansal,
W. J. Riley,
Dennis Baldocchi,
Takashi Hirano,
Gavin McNicol,
K. V. Schäfer,
L. Windham‐Myers,
Benjamin Poulter,
Robert B. Jackson,
Kuang‐Yu Chang,
Jiquen Chen,
Housen Chu,
Ankur R. Desai,
Sébastien Gogo,
Hiroki Iwata,
Minseok Kang,
Ivan Mammarella,
Matthias Peichl,
Oliver Sonnentag,
Eeva‐Stiina Tuittila,
Youngryel Ryu,
E. S. Euskirchen,
Mathias Göckede,
Adrien Jacotot,
Mats B. Nilsson,
Torsten Sachs,
Masahito Ueyama,
Sara Knox,
Kyle Delwiche,
Sheel Bansal,
W. J. Riley,
Dennis Baldocchi,
Takashi Hirano,
Gavin McNicol,
K. V. Schäfer,
L. Windham‐Myers,
Benjamin Poulter,
Robert B. Jackson,
Kuang‐Yu Chang,
Jiquen Chen,
Housen Chu,
Ankur R. Desai,
Sébastien Gogo,
Hiroki Iwata,
Minseok Kang,
Ivan Mammarella,
Matthias Peichl,
Oliver Sonnentag,
Eeva‐Stiina Tuittila,
Youngryel Ryu,
E. S. Euskirchen,
Mathias Göckede,
Adrien Jacotot,
Mats B. Nilsson,
Torsten Sachs
Global Change Biology, Volume 29, Issue 8
Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.
DOI
bib
abs
Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison
Gavin McNicol,
Etienne Fluet‐Chouinard,
Zutao Ouyang,
Sara Knox,
Zhen Zhang,
Tuula Aalto,
Sheel Bansal,
Kuang‐Yu Chang,
Min Chen,
Kyle Delwiche,
Sarah Féron,
Mathias Goeckede,
Jinxun Liu,
Avni Malhotra,
Joe R. Melton,
W. J. Riley,
Rodrigo Vargas,
Kunxiaojia Yuan,
Qing Ying,
Qing Zhu,
Pavel Alekseychik,
Mika Aurela,
David P. Billesbach,
David I. Campbell,
Jiquan Chen,
Housen Chu,
Ankur R. Desai,
E. S. Euskirchen,
Jordan P. Goodrich,
Timothy J. Griffis,
Manuel Helbig,
Takashi Hirano,
Hiroki Iwata,
Gerald Jurasinski,
John S. King,
Franziska Koebsch,
Randall K. Kolka,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Mats E Nilson,
Asko Noormets,
Walter C. Oechel,
Matthias Peichl,
Torsten Sachs,
Ayaka Sakabe,
Christopher Schulze,
Oliver Sonnentag,
Ryan C. Sullivan,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Timo Vesala,
Eric J. Ward,
Christian Wille,
Guan Xhuan Wong,
Donatella Zona,
L. Windham‐Myers,
Benjamin Poulter,
Robert B. Jackson
AGU Advances, Volume 4, Issue 5
Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 ± 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).
2022
DOI
bib
abs
Characterizing performance of freshwater wetland methane models across time scales at FLUXNET-CH4 sites using wavelet analyses
Zhen Zhang,
Sheel Bansal,
Kuang‐Yu Chang,
Etienne Fluet‐Chouinard,
Kyle Delwiche,
Mathias Goeckede,
A. F. Gustafson,
Sara Knox,
Antti Leppänen,
Licheng Liu,
Jinxun Liu,
Avni Malhotra,
Tiina Markkanen,
Gavin McNicol,
Joe R. Melton,
Paul Miller,
Changhui Peng,
Maarit Raivonen,
W. J. Riley,
Oliver Sonnentag,
Tuula Aalto,
Rodrigo Vargas,
Wenxin Zhang,
Qing Zhu,
Qiuan Zhu,
Qianlai Zhuang,
L. Windham‐Myers,
Robert B. Jackson,
Benjamin Poulter
Process-based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site-level patterns of freshwater wetland CH4 fluxes (FCH4) at different time scales. A Monte Carlo approach has been developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that 1) significant model-observation disagreements are mainly at short- to intermediate time scales (< 15 days); 2) most of the models can capture the CH4 variability at long time scales (> 32 days) for the boreal and Arctic tundra wetland sites but have limited performance for temperate and tropical/subtropical sites; 3) model error approximates pink noise patterns, indicating that biases at short time scales (< 5 days) could contribute to persistent systematic biases on longer time scales; and 4) differences in error pattern are related to model structure (e.g. proxy of CH4 production). Our evaluation suggests the need to accurately replicate FCH4 variability in future wetland CH4 model developments.
2021
DOI
bib
abs
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang,
W. J. Riley,
Sara Knox,
Robert B. Jackson,
Gavin McNicol,
Benjamin Poulter,
Mika Aurela,
Dennis Baldocchi,
Sheel Bansal,
Gil Bohrer,
David I. Campbell,
Alessandro Cescatti,
Housen Chu,
Kyle Delwiche,
Ankur R. Desai,
E. S. Euskirchen,
Thomas Friborg,
Mathias Goeckede,
Manuel Helbig,
Kyle S. Hemes,
Takashi Hirano,
Hiroki Iwata,
Minseok Kang,
Trevor F. Keenan,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Bhaskar Mitra,
Akira Miyata,
Mats B. Nilsson,
Asko Noormets,
Walter C. Oechel,
Dario Papale,
Matthias Peichl,
Michele L. Reba,
Janne Rinne,
Benjamin R. K. Runkle,
Youngryel Ryu,
Torsten Sachs,
Karina V. R. Schäfer,
Hans Peter Schmid,
Narasinha Shurpali,
Oliver Sonnentag,
Angela C. I. Tang,
Margaret Torn,
Carlo Trotta,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Rodrigo Vargas,
Timo Vesala,
L. Windham‐Myers,
Zhen Zhang,
Donatella Zona,
Kuang‐Yu Chang,
W. J. Riley,
Sara Knox,
Robert B. Jackson,
Gavin McNicol,
Benjamin Poulter,
Mika Aurela,
Dennis Baldocchi,
Sheel Bansal,
Gil Bohrer,
David I. Campbell,
Alessandro Cescatti,
Housen Chu,
Kyle Delwiche,
Ankur R. Desai,
E. S. Euskirchen,
Thomas Friborg,
Mathias Goeckede,
Manuel Helbig,
Kyle S. Hemes,
Takashi Hirano,
Hiroki Iwata,
Minseok Kang,
Trevor F. Keenan,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Bhaskar Mitra,
Akira Miyata,
Mats B. Nilsson,
Asko Noormets,
Walter C. Oechel,
Dario Papale,
Matthias Peichl,
Michele L. Reba,
Janne Rinne,
Benjamin R. K. Runkle,
Youngryel Ryu,
Torsten Sachs,
Karina V. R. Schäfer,
Hans Peter Schmid,
Narasinha Shurpali,
Oliver Sonnentag,
Angela C. I. Tang,
Margaret Torn,
Carlo Trotta,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Rodrigo Vargas,
Timo Vesala,
L. Windham‐Myers,
Zhen Zhang,
Donatella Zona
Nature Communications, Volume 12, Issue 1
Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.
DOI
bib
abs
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang,
W. J. Riley,
Sara Knox,
Robert B. Jackson,
Gavin McNicol,
Benjamin Poulter,
Mika Aurela,
Dennis Baldocchi,
Sheel Bansal,
Gil Bohrer,
David I. Campbell,
Alessandro Cescatti,
Housen Chu,
Kyle Delwiche,
Ankur R. Desai,
E. S. Euskirchen,
Thomas Friborg,
Mathias Goeckede,
Manuel Helbig,
Kyle S. Hemes,
Takashi Hirano,
Hiroki Iwata,
Minseok Kang,
Trevor F. Keenan,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Bhaskar Mitra,
Akira Miyata,
Mats B. Nilsson,
Asko Noormets,
Walter C. Oechel,
Dario Papale,
Matthias Peichl,
Michele L. Reba,
Janne Rinne,
Benjamin R. K. Runkle,
Youngryel Ryu,
Torsten Sachs,
Karina V. R. Schäfer,
Hans Peter Schmid,
Narasinha Shurpali,
Oliver Sonnentag,
Angela C. I. Tang,
Margaret Torn,
Carlo Trotta,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Rodrigo Vargas,
Timo Vesala,
L. Windham‐Myers,
Zhen Zhang,
Donatella Zona,
Kuang‐Yu Chang,
W. J. Riley,
Sara Knox,
Robert B. Jackson,
Gavin McNicol,
Benjamin Poulter,
Mika Aurela,
Dennis Baldocchi,
Sheel Bansal,
Gil Bohrer,
David I. Campbell,
Alessandro Cescatti,
Housen Chu,
Kyle Delwiche,
Ankur R. Desai,
E. S. Euskirchen,
Thomas Friborg,
Mathias Goeckede,
Manuel Helbig,
Kyle S. Hemes,
Takashi Hirano,
Hiroki Iwata,
Minseok Kang,
Trevor F. Keenan,
Ken W. Krauss,
Annalea Lohila,
Ivan Mammarella,
Bhaskar Mitra,
Akira Miyata,
Mats B. Nilsson,
Asko Noormets,
Walter C. Oechel,
Dario Papale,
Matthias Peichl,
Michele L. Reba,
Janne Rinne,
Benjamin R. K. Runkle,
Youngryel Ryu,
Torsten Sachs,
Karina V. R. Schäfer,
Hans Peter Schmid,
Narasinha Shurpali,
Oliver Sonnentag,
Angela C. I. Tang,
Margaret Torn,
Carlo Trotta,
Eeva‐Stiina Tuittila,
Masahito Ueyama,
Rodrigo Vargas,
Timo Vesala,
L. Windham‐Myers,
Zhen Zhang,
Donatella Zona
Nature Communications, Volume 12, Issue 1
Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.