L. R. Bentley


2022

DOI bib
Postmortem analysis of safe-yield estimation of a heterogeneous aquifer for rural water supply
Elizabeth Munroe, Masaki Hayashi, L. R. Bentley
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 47, Issue 2-3

Sustainable groundwater management is founded on the sound understanding of the effects of water extraction on the aquifer water level and the springs and streams receiving groundwater discharge. Pumping test data are commonly used in extraction licence applications to evaluate aquifer properties and assess the magnitude of storage depletion resulting from pumping. However, a short duration (eg 48 hours) pumping test can fail to detect the presence of aquifer boundaries, as the cone of depression is not large enough to reach the boundaries. This may cause an underestimation of long-term drawdown and an overestimation of permissible extraction rate (ie safe yield). In the rural town of Irricana in Alberta, groundwater extraction licences for municipal water supply wells were issued in the early 1980s based on the analysis of 48-hour pumping tests. Actual water extraction rates were substantially below the licensed rates, but the unanticipated and excessive drawdown in the aquifer forced the town to discontinue pumping and switch to surface water supply after 25 years. To examine the cause of overallocation, a new 48-hour pumping test was conducted in the same aquifer, which included an extended drawdown analysis using 26 days of recovery data. Geological formation logs for existing wells in the area surrounding Irricana were used to infer the extent of sandstone aquifer units within the heterogeneous bedrock formation. The new data analysis showed that the aquifer is semi-closed, contrary to the infinite-aquifer assumption used in the original pumping test, which caused additional drawdown due to the aquifer boundary effects. This study suggests an improved procedure for estimation of storage depletion using standard hydrogeological methods and readily available data. The new procedure provides a useful tool as part of adaptive groundwater management, in which water levels and other relevant variables are monitored and licensed extraction rates are adjusted accordingly.

2020

DOI bib
Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains
Craig W. Christensen, Masaki Hayashi, L. R. Bentley
Hydrogeology Journal, Volume 28, Issue 5

Abstract Groundwater storage in alpine regions is essential for maintaining baseflows in mountain streams. Recent studies have shown that common alpine landforms (e.g., talus and moraine) have substantial groundwater storage capacity, but the hydrogeological connectivity between individual landforms has not been understood. This study characterizes the hydrogeology of an alpine cirque basin in the Canadian Rocky Mountains that contains typical alpine landforms (talus, meadow, moraines) and hydrological features (tarn, streams, and springs). Geological, hydrological, and hydrochemical observations were used to understand the overall hydrogeological setting of the study basin, and three different geophysical methods (electrical resistivity tomography, seismic refraction tomography, and ground penetrating radar) were used to characterize the subsurface structure and connectivity, and to develop a hydrogeological conceptual model. Geophysical imaging shows that the talus is typically 20–40 m thick and highly heterogeneous. The meadow sediments are only up to 11 m thick but are part of a 30–40-m-thick accumulation of unconsolidated material that fills a bedrock overdeepening (i.e. a closed, subglacial basin). A minor, shallow groundwater system feeds springs on the talus and streams on the meadow, whereas a deep system in the moraine supplies most of the water to the basin outlet springs, thereby serving as a ‘gate keeper’ of the basin. Although the hydrologic functions of the talus in this study are substantially different from other locations, primarily due to differences in bedrock lithology and geomorphic processes, the general conceptual framework developed in this study is expected to be applicable to other alpine regions.

2018

DOI bib
Groundwater flow and storage processes in an inactive rock glacier
Jordan S. Harrington, Alexandra Mozil, Masaki Hayashi, L. R. Bentley
Hydrological Processes, Volume 32, Issue 20

Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.