Lei Tong


DOI bib
Fluvial Deposition and Land Use Change Control Selenium Occurrence in Mollisols of Cold Region Agroecosystems
Kunfu Pi, Philippe Van Cappellen, Yiqun Gan, Xinlin Zhong, Lei Tong, Weitao Chen, Xun Wang, Yanxin Wang
Environmental Science & Technology, Volume 57, Issue 1

Mollisols support the most productive agroecosystems in the world. Despite their critical links to food quality and human health, the varying distributions of selenium (Se) species and factors governing Se mobility in the mollisol vadose zone remain elusive. This research reveals that, in northern mollisol agroecosystems, Se hotspots (≥0.32 mg/kg) prevail along the regional river systems draining the Lesser Khingan Mountains, where piedmont Se-rich oil shales are the most probable source of regional Se. While selenate and selenite dominate Se species in the water-soluble and absorbed pools, mollisol organic matter is the major host for Se. Poorly crystalline and crystalline Fe oxides are subordinate in Se retention, hosting inorganic and organic Se at levels comparable to those in the adsorbed pool. The depth-dependent distributions of mollisol Se species for the non-cropland and cropland sites imply a predominance of reduced forms of Se under the mildly acidic and reducing conditions that, in turn, are variably impacted by agricultural land use. These findings therefore highlight that fluvial deposition and land use change together are the main drivers of the spatial variability and speciation of mollisol Se.


DOI bib
The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change
Kunfu Pi, Magdalena Bieroza, Anatoli Brouchkov, Weitao Chen, Louis J.P. Dufour, Konstantin B. Gongalsky, Anke M. Herrmann, Eveline J. Krab, Catherine Landesman, Anniet M. Laverman, Natalia Mazei, Yuri Mazei, Mats Öquist, Matthias Peichl, S. Pozdniakov, Fereidoun Rezanezhad, Céline Roose‐Amsaleg, Anastasia Shatilovich, Andong Shi, Christina M. Smeaton, Lei Tong, Andrey N. Tsyganov, Philippe Van Cappellen
Annual Review of Environment and Resources, Volume 46, Issue 1

Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions’ landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions’ critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.