2021
The successful Soil Moisture Active Passive (SMAP) mission provides operational soil moisture products of high quality; yet its impacts on global carbon and water cycle estimation are yet to be further investigated. Here we assimilated the SMAP enhanced Level-2 soil moisture product at 9 km resolution into a land surface scheme in order to study the soil moisture control on the functioning of terrestrial ecosystems. We found that SMAP significantly improves soil moisture simulations, especially in the spring. Extensive wetting signals were revealed over croplands in arid and semi-arid regions and could not be explained using reanalysis meteorological data, indicating an additional water input, for example, irrigation. Stronger impacts on gross primary production and evapotranspiration simulations are found in wetting adjustments than in drying adjustments after data assimilation. This study suggests that the performance of the land surface scheme benefits greatly from assimilating the SMAP soil moisture product.
DOI
bib
abs
Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data
Li He,
Rong Wang,
G. Mostovoy,
Jane Liu,
Jing M. Chen,
Jiali Shang,
Jiangui Liu,
Heather McNairn,
Jarrett Powers
Remote Sensing, Volume 13, Issue 4
We evaluate the potential of using a process-based ecosystem model (BEPS) for crop biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP), net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while the slopes of the regression models vary for individual crop type, indicating the need for calibration of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is also effective in AGB mapping for some crop types.
2020
DOI
bib
abs
Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants
Gabriel de Oliveira,
Jing M. Chen,
Guilherme Augusto Verola Mataveli,
Michel Eustáquio Dantas Chaves,
Hugo Seixas,
Francielle da Silva Cardozo,
Yosio E. Shimabukuro,
Li He,
Scott C. Stark,
Carlos Antônio Costa dos Santos
Forests, Volume 11, Issue 8
Deforestation in the Brazilian Amazon is related to the use of fire to remove natural vegetation and install crop cultures or pastures. In this study, we evaluated the relation between deforestation, land-use and land-cover (LULC) drivers and fire emissions in the Apyterewa Indigenous Land, Eastern Brazilian Amazon. In addition to the official Brazilian deforestation data, we used a geographic object-based image analysis (GEOBIA) approach to perform the LULC mapping in the Apyterewa Indigenous Land, and the Brazilian biomass burning emission model with fire radiative power (3BEM_FRP) to estimate emitted particulate matter with a diameter less than 2.5 µm (PM2.5), a primary human health risk. The GEOBIA approach showed a remarkable advancement of deforestation, agreeing with the official deforestation data, and, consequently, the conversion of primary forests to agriculture within the Apyterewa Indigenous Land in the past three years (200 km2), which is clearly associated with an increase in the PM2.5 emissions from fire. Between 2004 and 2016 the annual average emission of PM2.5 was estimated to be 3594 ton year−1, while the most recent interval of 2017–2019 had an average of 6258 ton year−1. This represented an increase of 58% in the annual average of PM2.5 associated with fires for the study period, contributing to respiratory health risks and the air quality crisis in Brazil in late 2019. These results expose an ongoing critical situation of intensifying forest degradation and potential forest collapse, including those due to a savannization forest-climate feedback, within “protected areas” in the Brazilian Amazon. To reverse this scenario, the implementation of sustainable agricultural practices and development of conservation policies to promote forest regrowth in degraded preserves are essential.
2018
DOI
bib
abs
Comparison of Big‐Leaf, Two‐Big‐Leaf, and Two‐Leaf Upscaling Schemes for Evapotranspiration Estimation Using Coupled Carbon‐Water Modeling
Xiangzhong Luo,
Jing M. Chen,
Jane Liu,
T. Andrew Black,
Holly Croft,
R. M. Staebler,
Li He,
M. Altaf Arain,
Bin Chen,
Gang Mo,
Alemu Gonsamo,
Harry McCaughey
Journal of Geophysical Research: Biogeosciences, Volume 123, Issue 1
Author(s): Luo, X; Chen, JM; Liu, J; Black, TA; Croft, H; Staebler, R; He, L; Arain, MA; Chen, B; Mo, G; Gonsamo, A; McCaughey, H | Abstract: Evapotranspiration (ET) is commonly estimated using the Penman-Monteith equation, which assumes that the plant canopy is a big leaf (BL) and the water flux from vegetation is regulated by canopy stomatal conductance (Gs). However, BL has been found to be unsuitable for terrestrial biosphere models built on the carbon-water coupling principle because it fails to capture daily variations of gross primary productivity (GPP). A two-big-leaf scheme (TBL) and a two-leaf scheme (TL) that stratify a canopy into sunlit and shaded leaves have been developed to address this issue. However, there is a lack of comparison of these upscaling schemes for ET estimation, especially on the difference between TBL and TL. We find that TL shows strong performance (r2n=n0.71, root-mean-square errorn=n0.05nmm/h) in estimating ET at nine eddy covariance towers in Canada. BL simulates lower annual ET and GPP than TL and TBL. The biases of estimated ET and GPP increase with leaf area index (LAI) in BL and TBL, and the biases of TL show no trends with LAI. BL miscalculates the portions of light-saturated and light-unsaturated leaves in the canopy, incurring negative biases in its flux estimation. TBL and TL showed improved yet different GPP and ET estimations. This difference is attributed to the lower Gs and intercellular CO2 concentration simulated in TBL compared to their counterparts in TL. We suggest to use TL for ET modeling to avoid the uncertainty propagated from the artificial upscaling of leaf-level processes to the canopy scale in BL and TBL.