Li Xu


2020

DOI bib
Using big data analytics to synthesize research domains and identify emerging fields in urban climatology
Fei Huo, Li Xu, Yanping Li, J. S. Famiglietti, Zhenhua Li, Yuya Kajikawa, Fei Chen
WIREs Climate Change, Volume 12, Issue 1

The growing concerns over urbanization and climate change have resulted in an exponential growth in publications on urban climatology in recent decades. However, an advanced synthesis that characterizes the existing studies is lacking. In this review, we used citation network analysis and a text mining approach to identify research trends and extract common research topics and the emerging domains in urban climatology. Based on the clustered networks, we found that aerosols and ozone, and urban heat island are the most popular topics. Together with other clusters, four emerging topical fields were identified: secondary organic aerosols, urban precipitation, flood risk and adaptation, and greenhouse gas emissions. The city case studies' geographical information was analyzed to explore the spatial–temporal patterns, especially in the emerging topical fields. Interdisciplinary research grew in recent years as the field of urban climatology expanded to interact with urban hydrology, health, energy issues, and social sciences. A few knowledge gaps were proposed: the lack of long‐term high‐temporal‐resolution observational data of organic aerosols for model validation and improvements, the need for predictions of urban effects on precipitation and extreme flooding events under climate change, and the lack of a framework for cooperation between physical sciences and social sciences under urban settings. To fill these gaps, we call for more observational data with high spatial and temporal resolution, using high‐resolution models that adequately represent urban processes to conduct scenario analyses for urban planning, and the development of intellectual frameworks for better integration of urban climatology and social‐economical systems in cities. This article is categorized under: Climate, History, Society, Culture > Disciplinary Perspectives

2019

DOI bib
China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues
Lijuan Du, Li Xu, Yanping Li, Changshun Liu, Zhenhua Li, Jefferson S. Wong, Lei Bo
Sustainability, Volume 11, Issue 24

The United Nations (UN) has identified 17 Sustainable Development Goals (SDGs) to tackle major barriers to sustainable development by 2030. Achieving these goals will rely on the contribution of all nations and require balancing trade-offs among different sectors. Water and food insecurity have long been the two major challenges facing China. To address these challenges and achieve the SDGs, China needs to safeguard its agricultural irrigation and water conservancy projects. Although China is making efforts to transition its agricultural development to a sustainable trajectory by promoting water-saving irrigation, a number of issues are emerging, both with policy reforms and technological innovations. Through synthesizing the historical development of agriculture and its relationship with policy and political regimes, this paper identifies four major issues that are challenging the sustainability transformation of China’s agricultural irrigation system and water conservancy projects: (1) problems with financial policy coordination between central and local governments; (2) the lack of incentives for farmers to construct and maintain irrigation infrastructure; (3) conflicts between decentralized operation of land and benefits from shared irrigation infrastructure; and (4) deterioration of small-scale irrigation infrastructure calls for action. In addressing these challenges, policy changes are required: government financial accountability at all levels needs to be clarified; subsidies need to be raised for the construction and management of small-scale irrigation and water conservancy projects; local non-profit organizations need to be established to enhance co-management between farmers and government.