Linden Fairbairn


2021

DOI bib
Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands
Eunji Byun, Fereidoun Rezanezhad, Linden Fairbairn, Stephanie Slowinski, Nathan Basiliko, Jonathan S. Price, W. L. Quinton, Pascale Roy‐Léveillée, Kara Webster, Philippe Van Cappellen
Scientific Reports, Volume 11, Issue 1

Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.

2020

DOI bib
Soil heterotrophic respiration as a function of water content and temperature in a mechanistic pore-scale model
Mehdi Gharasoo, Linden Fairbairn, Fereidoun Rezanezhad, Philippe Van Cappellen

<p>Soil heterotrophic respiration has been considered as a key source of CO<sub>2</sub> flux into the atmosphere and thus plays an important role in global warming. Although the relationship between soil heterotrophic respiration and soil water content has been frequently studied both theoretically and experimentally, model development has thus far been empirically based. Empirical models are often limited to the specific condition of their case studies and cannot be used as a general platform for modeling. Moreover, it is difficult to extend the empirical models by theoretically defined affinities to any desired degree of accuracy. As a result, it is of high priority to develop process-based models that are able to describe the mechanisms behind this phenomenon with more deterministic terms.</p><p>Here we present a mechanistic, mathematically-driven model that is based on the common geometry of a pore in porous media. Assuming that the aerobic respiration of bacteria requires oxygen as an electron acceptor and dissolved organic carbon (DOC) as a substrate, the CO<sub>2</sub> fluxes are considered a function of the bioavailable fraction of both DOC and oxygen. In this modeling approach, the availability of oxygen is controlled by its penetration into the aquatic phase through the interface between air and water. DOC on the other hand is only available to a section of the soil that is in contact with water. As the water saturation in the pore changes, it dynamically and kinematically impacts these interfaces through which the mass transfer of nutrients occurs, and therefore the CO<sub>2</sub> fluxes are directly controlled by water content. We showcased the model applicability on several case studies and illustrated the model capability in simulating the observed microbial respiration rates versus the soil water contents. Furthermore, we showed the model potential to accept additional physically-motivated parameters in order to explain respiration rates in frozen soils or at different temperatures.</p>