Louise Slater


2023

DOI bib
Hybrid forecasting: blending climate predictions with AI models
Louise Slater, Louise Arnal, Marie‐Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew W. Wood, Massimiliano Zappa, Louise Slater, Louise Arnal, Marie‐Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew W. Wood, Massimiliano Zappa
Hydrology and Earth System Sciences, Volume 27, Issue 9

Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.

DOI bib
Hybrid forecasting: blending climate predictions with AI models
Louise Slater, Louise Arnal, Marie‐Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew W. Wood, Massimiliano Zappa, Louise Slater, Louise Arnal, Marie‐Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew W. Wood, Massimiliano Zappa
Hydrology and Earth System Sciences, Volume 27, Issue 9

Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.

2021

DOI bib
Challenges in modeling and predicting floods and droughts: A review
Manuela I. Brunner, Louise Slater, Lena M. Tallaksen, Martyn Clark, Manuela I. Brunner, Louise Slater, Lena M. Tallaksen, Martyn Clark
WIREs Water, Volume 8, Issue 3

Predictions of floods, droughts, and fast drought‐flood transitions are required at different time scales to develop management strategies targeted at minimizing negative societal and economic impacts. Forecasts at daily and seasonal scale are vital for early warning, estimation of event frequency for hydraulic design, and long‐term projections for developing adaptation strategies to future conditions. All three types of predictions—forecasts, frequency estimates, and projections—typically treat droughts and floods independently, even though both types of extremes can be studied using related approaches and have similar challenges. In this review, we (a) identify challenges common to drought and flood prediction and their joint assessment and (b) discuss tractable approaches to tackle these challenges. We group challenges related to flood and drought prediction into four interrelated categories: data, process understanding, modeling and prediction, and human–water interactions. Data‐related challenges include data availability and event definition. Process‐related challenges include the multivariate and spatial characteristics of extremes, non‐stationarities, and future changes in extremes. Modeling challenges arise in frequency analysis, stochastic, hydrological, earth system, and hydraulic modeling. Challenges with respect to human–water interactions lie in establishing links to impacts, representing human–water interactions, and science communication. We discuss potential ways of tackling these challenges including exploiting new data sources, studying droughts and floods in a joint framework, studying societal influences and compounding drivers, developing continuous stochastic models or non‐stationary models, and obtaining stakeholder feedback. Tackling one or several of these challenges will improve flood and drought predictions and help to minimize the negative impacts of extreme events.

DOI bib
Challenges in modeling and predicting floods and droughts: A review
Manuela I. Brunner, Louise Slater, Lena M. Tallaksen, Martyn Clark, Manuela I. Brunner, Louise Slater, Lena M. Tallaksen, Martyn Clark
WIREs Water, Volume 8, Issue 3

Predictions of floods, droughts, and fast drought‐flood transitions are required at different time scales to develop management strategies targeted at minimizing negative societal and economic impacts. Forecasts at daily and seasonal scale are vital for early warning, estimation of event frequency for hydraulic design, and long‐term projections for developing adaptation strategies to future conditions. All three types of predictions—forecasts, frequency estimates, and projections—typically treat droughts and floods independently, even though both types of extremes can be studied using related approaches and have similar challenges. In this review, we (a) identify challenges common to drought and flood prediction and their joint assessment and (b) discuss tractable approaches to tackle these challenges. We group challenges related to flood and drought prediction into four interrelated categories: data, process understanding, modeling and prediction, and human–water interactions. Data‐related challenges include data availability and event definition. Process‐related challenges include the multivariate and spatial characteristics of extremes, non‐stationarities, and future changes in extremes. Modeling challenges arise in frequency analysis, stochastic, hydrological, earth system, and hydraulic modeling. Challenges with respect to human–water interactions lie in establishing links to impacts, representing human–water interactions, and science communication. We discuss potential ways of tackling these challenges including exploiting new data sources, studying droughts and floods in a joint framework, studying societal influences and compounding drivers, developing continuous stochastic models or non‐stationary models, and obtaining stakeholder feedback. Tackling one or several of these challenges will improve flood and drought predictions and help to minimize the negative impacts of extreme events.