Lu Zhuo


DOI bib
Historical and Projected Changes to the Stages and Other Characteristics of Severe Canadian Prairie Droughts
Barrie Bonsal, Lu Zhuo, Elaine Wheaton, Ronald E. Stewart
Water, Volume 12, Issue 12

Large-area, long-duration droughts are among Canada’s costliest natural disasters. A particularly vulnerable region includes the Canadian Prairies where droughts have, and are projected to continue to have, major impacts. However, individual droughts often differ in their stages such as onset, growth, persistence, retreat, and duration. Using the Standardized Precipitation Evapotranspiration Index, this study assesses historical and projected future changes to the stages and other characteristics of severe drought occurrence across the agricultural region of the Canadian Prairies. Ten severe droughts occurred during the 1900–2014 period with each having unique temporal and spatial characteristics. Projected changes from 29 global climate models (GCMs) with three representative concentration pathways reveal an increase in severe drought occurrence, particularly toward the end of this century with a high emissions scenario. For the most part, the overall duration and intensity of future severe drought conditions is projected to increase mainly due to longer persistence stages, while growth and retreat stages are generally shorter. Considerable variability exists among individual GCM projections, including their ability to simulate observed severe drought characteristics. This study has increased understanding in potential future changes to a little studied aspect of droughts, namely, their stages and associated characteristics. This knowledge can aid in developing future adaptation strategies.


DOI bib
A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie Bonsal, John Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, C. M. DeBeer, Benita Y. Tam, Zhenhua Li, Lu Zhuo, Jennifer Bruneau, Sébastien Marinier, Dominic Matte

Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.