Martin Leduc


DOI bib
Future change in amplitude and timing of high-flow events in a Canadian subarctic watershed
Olivier Champagne, M. Altaf Arain, Shusen Wang, Martin Leduc
Cold Regions Science and Technology, Volume 209

The Hudson Bay basin is a large contributor of freshwater input in the Arctic Ocean and is also an area affected by destructive spring floods. In this study, the hydrological model MESH (Modelisation Environmentale Communautaire - Surface and hydrology) was set up for the Groundhog River watershed situated in the Hudson Bay basin, to simulate the future evolution of streamflow and annual maximum streamflow. MESH was forced by meteorological data from ERA5 reanalyses in the historical period (1979–2018) and 12 models of the Coupled model intercomparison Project Phase 5 (CMIP5) downscaled with the Canadian Regional Climate model version 5 (CRCM5) in historical (1979–2005) and scenario period (2006–2098). The projections consistently indicate an earlier spring flow and a reduction in the amount of annual maximum streamflow by the end of the 21st century. Under the RCP8.5 scenario, the annual maximum streamflow occurring in the spring is expected to be advanced by 2 weeks and reduced on average from 852 m3/s (±265) in the historical period (1979–2018) to 717m3/s (±250) by the end of the 21st century (2059–2098). Because the seasonal projection of streamflow was not investigated in previous studies, this work is an important first step to assess the seasonal change of streamflow in the Hudson Bay region under climate change.


DOI bib
Interdecadal variability of streamflow in the Hudson Bay Lowlands watersheds driven by atmospheric circulation
Olivier Champagne, M. Altaf Arain, Shusen Wang, Martin Leduc, H A J Russell
Journal of Hydrology: Regional Studies, Volume 36

• Streamflow was satisfactorily simulated by MESH model in Hudson Bay lowlands. • Higher precipitation and streamflow observed in the western watersheds in 1995–2008. • The wet period in 1995–2008 was due to a shift in regional atmospheric circulation. • PDO and EP-NP also influenced this wet period. • Dryer period but sustained streamflow in 2009–2019 due to permafrost thaw. Hudson Bay Lowlands watersheds, Ontario, Canada. The rivers in the Hudson Bay Lowlands are a major source of freshwater entering the Arctic Ocean and they also cause major floods. In recent decades, this region has been affected by major changes in hydroclimatic processes attributed to climate change and natural climate variability. In this study, we used ERA5 reanalysis data, hydrometric observations, and the hydrological model MESH, to investigate the impact of atmospheric circulation on the inter-decadal variability of streamflow between 1979 and 2018 in the Hudson Bay Lowlands. The natural climate variability was assessed using a weather regimes approach based on the discretization of daily geopotential height anomalies (Z500) from ERA5 reanalysis, as well as large scale oceanic and atmospheric variability modes. The results showed an anomalous convergence of atmospheric moisture flux between 1995–2008 that enhanced precipitation and increased streamflow in the western part of the region. This moisture convergence was likely driven by the combination of (i) low pressure anomalies in the East Coast of North America and (ii) low pressure anomalies in western regions of Canada, associated with the cold phase of the pacific decadal oscillation (PDO). Since 2009, streamflow remains high, likely due to more groundwater discharge associated with the degradation of permafrost.


DOI bib
Winter hydrometeorological extreme events modulated by large-scale atmospheric circulation in southern Ontario
Olivier Champagne, Martin Leduc, Paulin Coulibaly, M. Altaf Arain
Earth System Dynamics, Volume 11, Issue 1

Abstract. Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in terms of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. The rain on snow index has been widely used, but it neglects rain-only events which are expected to be more frequent in the future. In this study, we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model large ensemble (CRCM5-LE). These climate data were used as input in Precipitation Runoff Modelling System (PRMS) hydrological model to simulate the future evolution of high flows in three watersheds in southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in north-eastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 ∘C were necessary historical conditions to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated with two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP regime) and the Atlantic Ocean (South regime). These hydrometeorological extreme events will still be associated with the same atmospheric patterns in the near future. The future evolution of the index will be modulated by the internal variability of the climate system, as higher Z500 on the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high-flow generation. This study shows the value of the CRCM5-LE dataset in simulating hydrometeorological extreme events in eastern Canada and better understanding the uncertainties associated with internal variability of climate.

DOI bib
Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario
Olivier Champagne, M. Altaf Arain, Martin Leduc, Paulin Coulibaly, Shawn McKenzie
Hydrology and Earth System Sciences, Volume 24, Issue 6

Abstract. Fluvial systems in southern Ontario are regularly affected by widespread early-spring flood events primarily caused by rain-on-snow events. Recent studies have shown an increase in winter floods in this region due to increasing winter temperature and precipitation. Streamflow simulations are associated with uncertainties mainly due to the different scenarios of greenhouse gas emissions, global climate models (GCMs) or the choice of the hydrological model. The internal variability of climate, defined as the chaotic variability of atmospheric circulation due to natural internal processes within the climate system, is also a source of uncertainties to consider. Uncertainties of internal variability can be assessed using hydrological models fed by downscaled data of a global climate model large ensemble (GCM-LE), but GCM outputs have too coarse of a scale to be used in hydrological modeling. The Canadian Regional Climate Model Large Ensemble (CRCM5-LE), a 50-member ensemble downscaled from the Canadian Earth System Model version 2 Large Ensemble (CanESM2-LE), was developed to simulate local climate variability over northeastern North America under different future climate scenarios. In this study, CRCM5-LE temperature and precipitation projections under an RCP8.5 scenario were used as input in the Precipitation Runoff Modeling System (PRMS) to simulate streamflow at a near-future horizon (2026–2055) for four watersheds in southern Ontario. To investigate the role of the internal variability of climate in the modulation of streamflow, the 50 members were first grouped in classes of similar projected change in January–February streamflow and temperature and precipitation between 1961–1990 and 2026–2055. Then, the regional change in geopotential height (Z500) from CanESM2-LE was calculated for each class. Model simulations showed an average January–February increase in streamflow of 18 % (±8.7) in Big Creek, 30.5 % (±10.8) in Grand River, 29.8 % (±10.4) in Thames River and 31.2 % (±13.3) in Credit River. A total of 14 % of all ensemble members projected positive Z500 anomalies in North America's eastern coast enhancing rain, snowmelt and streamflow volume in January–February. For these members the increase of streamflow is expected to be as high as 31.6 % (±8.1) in Big Creek, 48.3 % (±11.1) in Grand River, 47 % (±9.6) in Thames River and 53.7 % (±15) in Credit River. Conversely, 14 % of the ensemble projected negative Z500 anomalies in North America's eastern coast and were associated with a much lower increase in streamflow: 8.3 % (±7.8) in Big Creek, 18.8 % (±5.8) in Grand River, 17.8 % (±6.4) in Thames River and 18.6 % (±6.5) in Credit River. These results provide important information to researchers, managers, policymakers and society about the expected ranges of increase in winter streamflow in a highly populated region of Canada, and they will help to explain how the internal variability of climate is expected to modulate the future streamflow in this region.