Marysa M. Laguë


2023

DOI bib
The Zonal Patterns in Late Quaternary Tropical South American Precipitation
Tyler Kukla, Matthew J. Winnick, Marysa M. Laguë, Zhengyu Xia
Paleoceanography and Paleoclimatology, Volume 38, Issue 4

Abstract Speleothem oxygen isotope records (δ 18 O) of tropical South American rainfall in the late Quaternary show a zonal “South American Precipitation Dipole” (SAPD). The dipole is characterized by opposing east‐west precipitation anomalies compared to the present—wetter in the east and drier in the west at the mid‐Holocene (∼7 ka), and drier in the east and wetter in the west at the Last Glacial Maximum (∼21 ka). However, the SAPD remains enigmatic because it is expressed differently in western versus eastern δ 18 O records and isotope‐enabled climate model simulations usually misrepresent the magnitude and/or spatial pattern of δ 18 O change. Here, we address the SAPD enigma in two parts. First, we re‐interpret the δ 18 O data to account for upwind rainout effects that are known to be pervasive in tropical South America, but are not always considered in Quaternary paleoclimate studies. Our revised interpretation reconciles the δ 18 O data with cave infiltration and other proxy records, and indicates that the centroid of tropical South American rainfall has migrated zonally over time. Second, using an energy balance model of tropical atmospheric circulation, we hypothesize that zonal migration of the precipitation centroid can be explained by regional energy budget shifts, such as changing Saharan albedo associated with the African Humid Period, that have not been modeled in previous SAPD studies. This hypothesis of a migrating precipitation centroid presents a new framework for interpreting δ 18 O records from tropical South America and may help explain the zonal rainfall anomalies that predate the late Quaternary.

DOI bib
Understanding Responses of Summer Continental Daily Temperature Variance to Perturbations in the Land Surface Evaporative Resistance
Wenwen Kong, Karen A. McKinnon, Isla R. Simpson, Marysa M. Laguë
Journal of Climate, Volume 36, Issue 6

Abstract Understanding the roles of land surface conditions and atmospheric circulation on continental daily temperature variance is key to improving predictions of temperature extremes. Evaporative resistance ( r s , hereafter), a function of the land cover type, reflects the ease with which water can be evaporated or transpired and is a strong control on land–atmosphere interactions. This study explores the effects of r s perturbations on summer daily temperature variance using the Simple Land Interface Model (SLIM) by mimicking, for r s only, a global land cover conversion from forest to crop/grassland. Decreasing r s causes a global cooling. The cooling is larger in wetter areas and weaker in drier areas, and primarily results from perturbations in shortwave radiation (SW) and latent heat flux (LH). Decreasing r s enhances cloud cover due to greater land surface evaporation and thus reduces incoming SW over most land areas. When r s decreases, wetter areas experience strong evaporative cooling, while drier areas become more moisture-limited and thus experience less cooling. Thermal advection further shapes the temperature response by damping the combined impacts of SW and LH. Temperature variance increases in drier areas and decreases in wetter areas as r s decreases. The temperature variance changes can be largely explained from changes in the combined variance of SW and LH, including an important contribution of changes in the covariance of SW and LH. In contrast, the effects of changes in thermal advection variance mainly affect the Northern Hemisphere midlatitudes. Significance Statement This study aims to better understand processes governing daily near-surface air temperature variance over land. We use an idealized modeling framework to explore the effects of land surface evaporative resistance (a parameter that controls how hard it is to evaporate water from the surface) on summer daily temperature variance. We find that a uniform decrease of evaporative resistance across the global land surface causes changes in the temperature variance that can be predicted from changes in the combined variance of shortwave radiation and latent heat flux. The variance of horizontal advection is important in altering the temperature variance in the Northern Hemisphere midlatitudes. Our findings shed light on predicting the characteristics of temperature variability as a function of surface conditions.

2022

DOI bib
Why do the Global Warming Responses of Land‐Surface Models and Climatic Dryness Metrics Disagree?
Jacob Scheff, Sloan Coats, Marysa M. Laguë
Earth's Future, Volume 10, Issue 8

Abstract Earth System Models’ complex land components simulate a patchwork of increases and decreases in surface water availability when driven by projected future climate changes. Yet, commonly‐used simple theories for surface water availability, such as the Aridity Index (P/E0) and Palmer Drought Severity Index (PDSI), obtain severe, globally dominant drying when driven by those same climate changes, leading to disagreement among published studies. In this work, we use a common modeling framework to show that Earth System Model (ESM) simulated runoff‐ratio and soil‐moisture responses become much more consistent with the P/E0 and PDSI responses when several previously known factors that the latter do not account for are cut out of the simulations. This reconciles the disagreement and makes the full ESM responses more understandable. For ESM runoff ratio, the most important factor causing the more positive global response compared to P/E0 is the concentration of precipitation in time with greenhouse warming. For ESM soil moisture, the most important factor causing the more positive global response compared to PDSI is the effect of increasing carbon dioxide on plant physiology, which also drives most of the spatial variation in the runoff ratio enhancement. The effect of increasing vapor‐pressure deficit on plant physiology is a key secondary factor for both. Future work will assess the utility of both the ESMs and the simple indices for understanding observed, historical trends.

DOI bib
Downwind control of oceanic air by land: the land wake and its sensitivity to CO<sub>2</sub>
Marysa M. Laguë, Gregory R. Quetin, William R. Boos
Environmental Research Letters, Volume 17, Issue 10

Abstract Oceans are well-known to be directly altered by global climate forcings such as greenhouse gas changes, but how oceans are indirectly influenced by land and its response to such forcings remains less explored. Here, we assess the present-day and projected future state of a little-explored feature of the climate system—a ‘land wake’ in relative humidity downwind of the east coast of North America, consisting of low-humidity continental air extending roughly 1000 km over the Atlantic ocean. The wake exists throughout the year, but is supported by high continental temperatures in summer and low continental moisture in winter. The wake is well represented in an ensemble of global climate models (GCMs), qualitatively matching reanalysis data. Under increasing atmospheric CO 2 , the land wake intensifies in GCM simulations through two pathways: the radiative effects of CO 2 on surface temperatures, and the biogeochemical effect of CO 2 on terrestrial vegetation. Vegetation responses to increased CO 2 alter the summer wake from Florida to Newfoundland, and both the radiative and biogeochemical effects of CO 2 drive reductions in coastal cloud cover. These changes illustrate the potential of rapidly changing terrestrial climate to influence coastal regions and the ocean environment downwind of continents through both light conditions and the energy balance of the surface ocean.

2021

DOI bib
Radiative feedbacks on land surface change and associated tropical precipitation shifts
Marysa M. Laguë, Abigail L. S. Swann, William R. Boos
Journal of Climate

Abstract Changes in land surface albedo and land surface evaporation modulate the atmospheric energy budget by changing temperatures, water vapor, clouds, snow and ice cover, and the partitioning of surface energy fluxes. Here idealized perturbations to land surface properties are imposed in a global model to understand how such forcings drive shifts in zonal mean atmospheric energy transport and zonal mean tropical precipitation. For a uniform decrease in global land albedo, the albedo forcing and a positive water vapor feedback contribute roughly equally to increased energy absorption at the top of the atmosphere (TOA), while radiative changes due to the temperature and cloud cover response provide a negative feedback and energy loss at TOA. Decreasing land albedo causes a northwards shift in the zonal mean intertropical convergence zone (ITCZ). The combined effects on ITCZ location of all atmospheric feedbacks roughly cancel for the albedo forcing; the total ITCZ shift is comparable to that predicted for the albedo forcing alone. For an imposed increase in evaporative resistance that reduces land evaporation, low cloud cover decreases in the northern mid-latitudes and more energy is absorbed at TOA there; longwave loss due to warming provides a negative feedback on the TOA energy balance and ITCZ shift. Imposed changes in land albedo and evaporative resistance modulate fundamentally different aspects of the surface energy budget. However, the pattern of TOA radiation changes due to the water vapor and air temperature responses are highly correlated for these two forcings because both forcings lead to near-surface warming.

DOI bib
Terrestrial Evaporation and Global Climate: Lessons from Northland, a Planet with a Hemispheric Continent
Marysa M. Laguë, M. Pietschnig, Sarah Ragen, Ted Smith, David S. Battisti
Journal of Climate, Volume 34, Issue 6

Abstract Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.