Masahito Ueyama


2023

DOI bib
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, E. S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs, Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, E. S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs
Global Change Biology, Volume 29, Issue 8

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.

DOI bib
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, E. S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs, Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, E. S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs
Global Change Biology, Volume 29, Issue 8

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel, Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel, Jennifer D. Watts, Mary Farina, John S. Kimball, Luke D. Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, E. S. Euskirchen, Frans‐Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, M. Jackowicz-Korczyński, Anna Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, Benjamin Poulter, Zhen Zhang, L. M. Bruhwiler, Charles E. Miller, S. J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

DOI bib
A boreal forest model benchmarking dataset for North America: a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Bo Qu, Alexandre Roy, Joe R. Melton, T. Andrew Black, B. D. Amiro, E. S. Euskirchen, Masahito Ueyama, Hideki Kobayashi, Christopher Schulze, Gabriel Hould Gosselin, Alex J. Cannon, Matteo Detto, Oliver Sonnentag
Environmental Research Letters, Volume 18, Issue 8

Abstract Climate change is rapidly altering composition, structure, and functioning of the boreal biome, across North America often broadly categorized into ecoregions. The resulting complex changes in different ecoregions present a challenge for efforts to accurately simulate carbon dioxide (CO 2 ) and energy exchanges between boreal forests and the atmosphere with terrestrial ecosystem models (TEMs). Eddy covariance measurements provide valuable information for evaluating the performance of TEMs and guiding their development. Here, we compiled a boreal forest model benchmarking dataset for North America by harmonizing eddy covariance and supporting measurements from eight black spruce ( Picea mariana )-dominated, mature forest stands. The eight forest stands, located in six boreal ecoregions of North America, differ in stand characteristics, disturbance history, climate, permafrost conditions and soil properties. By compiling various data streams, the benchmarking dataset comprises data to parameterize, force, and evaluate TEMs. Specifically, it includes half-hourly, gap-filled meteorological forcing data, ancillary data essential for model parameterization, and half-hourly, gap-filled or partitioned component flux data on CO 2 (net ecosystem production, gross primary production [GPP], and ecosystem respiration [ER]) and energy (latent [LE] and sensible heat [H]) and their daily aggregates screened based on half-hourly gap-filling quality criteria. We present a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to: (1) demonstrate the utility of our dataset to benchmark TEMs and (2) provide guidance for model development and refinement. Model skill was evaluated using several statistical metrics and further examined through the flux responses to their environmental controls. Our results suggest that CLASSIC tended to overestimate GPP and ER among all stands. Model performance regarding the energy fluxes (i.e., LE and H) varied greatly among the stands and exhibited a moderate correlation with latitude. We identified strong relationships between simulated fluxes and their environmental controls except for H, thus highlighting current strengths and limitations of CLASSIC.

DOI bib
Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison
Gavin McNicol, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Zhen Zhang, Tuula Aalto, Sheel Bansal, Kuang‐Yu Chang, Min Chen, Kyle Delwiche, Sarah Féron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, W. J. Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Ying, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur R. Desai, E. S. Euskirchen, Jordan P. Goodrich, Timothy J. Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John S. King, Franziska Koebsch, Randall K. Kolka, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Mats E Nilson, Asko Noormets, Walter C. Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva‐Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric J. Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
AGU Advances, Volume 4, Issue 5

Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 ± 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).

2022

DOI bib
Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
Manuel Helbig, Tatjana Živković, Pavel Alekseychik, Mika Aurela, Tarek S. El‐Madany, E. S. Euskirchen, Lawrence B. Flanagan, Timothy J. Griffis, Paul J. Hanson, J. Hattakka, Carole Helfter, Takashi Hirano, Elyn Humphreys, Gerard Kiely, Randall K. Kolka, Tuomas Laurila, Paul Leahy, Annalea Lohila, Ivan Mammarella, Mats B. Nilsson, A. V. Panov, Frans‐Jan W. Parmentier, Matthias Peichl, Janne Rinne, D. Tyler Roman, Oliver Sonnentag, Eeva‐Stiina Tuittila, Masahito Ueyama, Timo Vesala, Patrik Vestin, Simon Weldon, Per Weslien, Sönke Zaehle
Nature Climate Change, Volume 12, Issue 8

Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.

DOI bib
The ABCflux database: Arctic–boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems
Anna‐Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, K. E. Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, D. L. Peter, Christina Minions, Julia Nojeim, R. Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrèn López‐Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans‐Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret‐Harte, Sigrid Dengel, A. J. Dolman, Colin W. Edgar, Bo Elberling, E. S. Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang‐Jong Park, Roman Petrov, Anatoly Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, W. L. Quinton, Andrej Varlagin, Donatella Zona, Viacheslav I. Zyryanov
Earth System Science Data, Volume 14, Issue 1

Abstract. Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).

DOI bib
What explains the year-to-year variation in growing season timing of boreal black spruce forests?
Mariam El-Amine, Alexandre Roy, Franziska Koebsch, Jennifer L. Baltzer, Alan Barr, T. Andrew Black, Hiroki Ikawa, Hiroki Iwata, Hideki Kobayashi, Masahito Ueyama, Oliver Sonnentag
Agricultural and Forest Meteorology, Volume 324

Amplified climate warming in high latitudes is expected to affect growing season timing of the vast boreal biome. It is unclear whether the presence of permafrost (perennially frozen ground) might have an influence on changes in growing season timing. This study examined how different environmental variables explained, either directly or indirectly, the variation in growing season timing of boreal forest stands with and without permafrost. We expected that environmental variables explaining the variation in growing season timing differed or had different explanatory power depending on permafrost presence or absence. The growing season was delineated from daily gross primary productivity (GPP) time series derived from 40 site-year data of net ecosystem carbon dioxide exchange measured with eddy covariance techniques over five black spruce (Picea mariana [Mill.])-dominated boreal forest stands in North America. In permafrost-free forest stands, a combination of start in canopy ‘green-up’ in spring and the timing of air and soil temperature increasing above freezing explained the start-of-season (SOSGPP). Results from commonality analysis and structural equation modeling suggest that canopy ‘green-up’ and air temperature directly affected SOSGPP in permafrost-free forest stands. In addition, soil temperature acted as mediator for an indirect effect of air temperature on SOSGPP. In contrast, none of the environmental variables, or their combination, explained the variation in SOSGPP in forest stands with permafrost. The explanatory power of environmental variables was more consistent regarding the end-of-season (EOSGPP). In both, forest stands with and without permafrost, EOSGPP was directly explained by mean soil water content in the fall and the first day of continuous snowpack formation. A better understanding how environmental variables control SOSGPP and EOSGPP in forest stands with and without permafrost will help to refine parameterizations of the boreal biome in Earth system models.

DOI bib
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Kunxiaojia Yuan, Qing Zhu, Fa Li, W. J. Riley, Margaret Torn, Housen Chu, Gavin McNicol, Min Chen, Sara Knox, Kyle Delwiche, Huayi Wu, Dennis Baldocchi, Hongxu Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva‐Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats B. Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, E. S. Euskirchen, Eric J. Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroki Iwata, Jordan P. Goodrich, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 324

Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal relationships in predictive models significantly improved model performance. More importantly, modeled CH4 emissions differed by up to a factor of 4 under a +1°C warming scenario when causality constraints were considered. These results highlight the significant role of causality in modeling wetland CH4 emissions especially under future warming conditions, while traditional data-driven ML models may reproduce observations for the wrong reasons. Our proposed causality-guided model could benefit predictive modeling, large-scale upscaling, data gap-filling, and surrogate modeling of wetland CH4 emissions within earth system land models.

DOI bib
Permafrost Landscape History Shapes Fluvial Chemistry, Ecosystem Carbon Balance, and Potential Trajectories of Future Change
Scott Zolkos, Suzanne E. Tank, Steven V. Kokelj, Robert G. Striegl, Sarah Shakil, Carolina Voigt, Oliver Sonnentag, W. L. Quinton, Edward A. G. Schuur, Donatella Zona, Peter M. Lafleur, Ryan C. Sullivan, Masahito Ueyama, David P. Billesbach, David Cook, Elyn Humphreys, Philip Marsh
Global Biogeochemical Cycles, Volume 36, Issue 9

Abstract Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice‐rich moraine, and organic‐rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO 2 (25%) dominated. In watersheds affected by thaw‐induced mass wasting, erosion of ice‐rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw‐induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw‐induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance.

DOI bib
Vegetation type is an important predictor of the arctic summer land surface energy budget
Jacqueline Oehri, Gabriela Schaepman‐Strub, Jin‐Soo Kim, Raleigh Grysko, Heather Kropp, Inge Grünberg, Vitalii Zemlianskii, Oliver Sonnentag, E. S. Euskirchen, Merin Reji Chacko, Giovanni Muscari, Peter D. Blanken, Joshua Dean, Alcide di Sarra, R. J. Harding, Ireneusz Sobota, Lars Kutzbach, Elena Plekhanova, Aku Riihelä, Julia Boike, Nathaniel B. Miller, Jason Beringer, Efrèn López‐Blanco, Paul C. Stoy, Ryan C. Sullivan, Marek Kejna, Frans‐Jan W. Parmentier, John A. Gamon, Mikhail Mastepanov, Christian Wille, M. Jackowicz-Korczyński, Dirk Nikolaus Karger, W. L. Quinton, Jaakko Putkonen, Dirk van As, Torben R. Christensen, Maria Z. Hakuba, Robert S. Stone, Stefan Metzger, Baptiste Vandecrux, Gerald V. Frost, Martin Wild, Birger Ulf Hansen, Daniela Meloni, Florent Dominé, Mariska te Beest, Torsten Sachs, Aram Kalhori, Adrian V. Rocha, Scott Williamson, Sara Morris, A. L. Atchley, Richard Essery, Benjamin R. K. Runkle, David Holl, Laura Riihimaki, Hiroki Iwata, Edward A. G. Schuur, Christopher J. Cox, Andrey A. Grachev, J. P. McFadden, Robert S. Fausto, Mathias Göckede, Masahito Ueyama, Norbert Pirk, Gijs de Boer, M. Syndonia Bret‐Harte, Matti Leppäranta, Konrad Steffen, Thomas Friborg, Atsumu Ohmura, Colin W. Edgar, Johan Olofsson, Scott Chambers
Nature Communications, Volume 13, Issue 1

Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.

2021

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona, Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona, Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Global Change Biology, Volume 27, Issue 15

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.

DOI bib
Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Global Change Biology, Volume 27, Issue 15

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.

DOI bib
Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties
Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroki Iwata, Peter M. Lafleur, E. S. Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats B. Nilsson, Steven F. Oberbauer, Margaret Torn, Sang‐Jong Park, A. J. Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrèn López‐Blanco, Torben R. Christensen, Min Jung Kwon, Torsten Sachs, David Holl, Miska Luoto, Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroki Iwata, Peter M. Lafleur, E. S. Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats B. Nilsson, Steven F. Oberbauer, Margaret Torn, Sang‐Jong Park, A. J. Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrèn López‐Blanco, Torben R. Christensen, Min Jung Kwon, Torsten Sachs, David Holl, Miska Luoto
Global Change Biology, Volume 27, Issue 17

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.

DOI bib
Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties
Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroki Iwata, Peter M. Lafleur, E. S. Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats B. Nilsson, Steven F. Oberbauer, Margaret Torn, Sang‐Jong Park, A. J. Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrèn López‐Blanco, Torben R. Christensen, Min Jung Kwon, Torsten Sachs, David Holl, Miska Luoto, Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroki Iwata, Peter M. Lafleur, E. S. Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats B. Nilsson, Steven F. Oberbauer, Margaret Torn, Sang‐Jong Park, A. J. Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrèn López‐Blanco, Torben R. Christensen, Min Jung Kwon, Torsten Sachs, David Holl, Miska Luoto
Global Change Biology, Volume 27, Issue 17

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.

DOI bib
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar, Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8

Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

DOI bib
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar, Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, S. J. Goetz, Nima Madani, Luke D. Schiferl, R. Commane, John S. Kimball, Zhihua Liu, Margaret Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, Colin W. Edgar
Environmental Research Letters, Volume 16, Issue 8

Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

DOI bib
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Stephen Chan, Sigrid Dengel, Sébastien Biraud, Margaret Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, S. M. Brown, N. A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroki Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, B. E. Law, Xuhui Lee, M. E. Litvak, Heping Liu, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, W. L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart‐Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, Jeffrey D. Wood, Donatella Zona, Housen Chu, Xiangzhong Luo, Zutao Ouyang, Stephen Chan, Sigrid Dengel, Sébastien Biraud, Margaret Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, S. M. Brown, N. A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroki Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, B. E. Law, Xuhui Lee, M. E. Litvak, Heping Liu, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, W. L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart‐Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, Jeffrey D. Wood, Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302

• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.

DOI bib
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Stephen Chan, Sigrid Dengel, Sébastien Biraud, Margaret Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, S. M. Brown, N. A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroki Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, B. E. Law, Xuhui Lee, M. E. Litvak, Heping Liu, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, W. L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart‐Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, Jeffrey D. Wood, Donatella Zona, Housen Chu, Xiangzhong Luo, Zutao Ouyang, Stephen Chan, Sigrid Dengel, Sébastien Biraud, Margaret Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, S. M. Brown, N. A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroki Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, B. E. Law, Xuhui Lee, M. E. Litvak, Heping Liu, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, W. L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart‐Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, Jeffrey D. Wood, Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302

• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.

2020

DOI bib
Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
Heather Kropp, M. M. Loranty, Susan M. Natali, Alexander Kholodov, Adrian V. Rocha, Isla H. Myers‐Smith, Benjamin W Abbot, Jakob Abermann, Elena Blanc‐Betes, Daan Blok, Gesche Blume‐Werry, Julia Boike, Amy Breen, Sean M. P. Cahoon, Casper T. Christiansen, Thomas A. Douglas, Howard E. Epstein, Gerald V. Frost, Mathias Goeckede, Toke T. Høye, Steven D. Mamet, Jonathan A. O’Donnell, David Olefeldt, Gareth K. Phoenix, Verity Salmon, A. Britta K. Sannel, Sharon L. Smith, Oliver Sonnentag, Lydia J. S. Vaughn, Mathew Williams, Bo Elberling, Laura Gough, Jan Hjort, Peter M. Lafleur, E. S. Euskirchen, Monique M. P. D. Heijmans, Elyn Humphreys, Hiroki Iwata, Benjamin Jones, M. Torre Jorgenson, Inge Grünberg, Yongwon Kim, James A. Laundre, Marguerite Mauritz, Anders Michelsen, Gabriela Schaepman‐Strub, Ken D. Tape, Masahito Ueyama, Bang‐Yong Lee, Kirsty Langley, Magnus Lund
Environmental Research Letters, Volume 16, Issue 1

Abstract Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.

DOI bib
Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Peter D. Blanken, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Inke Forbrich, Thomas Friborg, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Erik Isabelle, Hiroki Iwata, Rachhpal S. Jassal, Mika Korkiakoski, J. Kurbatova, Lars Kutzbach, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Trofim C. Maximov, Joe R. Melton, Paul Moore, Daniel F. Nadeau, Erin M. Nicholls, Mats B. Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Roman Petrov, Anatoly Prokushkin, W. L. Quinton, David E. Reed, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, Ian B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Jessica Turner, Masahito Ueyama, Andrej Varlagin, Martin Wilmking, Steven C. Wofsy, Vyacheslav Zyrianov
Nature Climate Change, Volume 10, Issue 6

The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091–2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.

DOI bib
The biophysical climate mitigation potential of boreal peatlands during the growing season
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Erik Isabelle, Hiroki Iwata, Rachhpal S. Jassal, Mika Korkiakoski, J. Kurbatova, Lars Kutzbach, Е. Д. Лапшина, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Paul Moore, Trofim C. Maximov, Daniel F. Nadeau, Erin M. Nicholls, Mats B. Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Anatoly Prokushkin, W. L. Quinton, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, Ian B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Jessica Turner, Masahito Ueyama, Andrej Varlagin, Timo Vesala, Martin Wilmking, Vyacheslav Zyrianov, Christopher Schulze
Environmental Research Letters, Volume 15, Issue 10

Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. © 2020 The Author(s). Published by IOP Publishing Ltd. (Less)

DOI bib
COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data
Ben Bond‐Lamberty, Danielle Christianson, Avni Malhotra, Stephanie Pennington, Debjani Sihi, Amir AghaKouchak, Hassan Anjileli, M. Altaf Arain, Juan J. Armestó, Samaneh Ashraf, Mioko Ataka, Dennis Baldocchi, T. Andrew Black, Nina Buchmann, Mariah S. Carbone, Shih‐Chieh Chang, P. M. Crill, Peter S. Curtis, Eric A. Davidson, Ankur R. Desai, John E. Drake, Tarek S. El‐Madany, Michael Gavazzi, Carolyn‐Monika Görres, Christopher M. Gough, Michael L. Goulden, Jillian W. Gregg, Omar Gutiérrez del Arroyo, Jin He, Takashi Hirano, Anya M. Hopple, Holly Hughes, Järvi Järveoja, Rachhpal S. Jassal, Jinshi Jian, Haiming Kan, Jason P. Kaye, Yuji Kominami, Naishen Liang, David A. Lipson, Catriona A. Macdonald, Kadmiel Maseyk, Kayla Mathes, Marguerite Mauritz, Melanie A. Mayes, Steven G. McNulty, Guofang Miao, Mirco Migliavacca, S. D. Miller, Chelcy Ford Miniat, Jennifer Goedhart Nietz, Mats B. Nilsson, Asko Noormets, H. Norouzi, Christine S. O’Connell, Bruce Osborne, Cecilio Oyonarte, Zhuo Pang, Matthias Peichl, Elise Pendall, Jorge F. Pérez‐Quezada, Claire L. Phillips, Richard P. Phillips, James W. Raich, Alexandre A. Renchon, Nadine K. Ruehr, Enrique P. Sánchez‐Cañete, Matthew Saunders, K. E. Savage, Marion Schrumpf, Russell L. Scott, Ulli Seibt, Whendee L. Silver, Wu Sun, Daphne Szutu, Kentaro Takagi, Masahiro Takagi, Munemasa Teramoto, Mark G. Tjoelker, Susan Trumbore, Masahito Ueyama, Rodrigo Vargas, R. K. Varner, Joseph Verfaillie, Christoph S. Vogel, Jinsong Wang, G. Winston, Tana E. Wood, Zhenhua Wu, Thomas Wutzler, Jiye Zeng, Tianshan Zha, Quan Zhang, Junliang Zou
Global Change Biology, Volume 26, Issue 12

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.

2019

DOI bib
Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition
Zhihua Liu, John S. Kimball, N. Parazoo, Ashley P. Ballantyne, Wen J. Wang, Nima Madani, Caleb G. Pan, Jennifer D. Watts, Rolf H. Reichle, Oliver Sonnentag, Philip Marsh, Miriam Hurkuck, Manuel Helbig, W. L. Quinton, Donatella Zona, Masahito Ueyama, Hideki Kobayashi, E. S. Euskirchen
Global Change Biology, Volume 26, Issue 2

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.
Search
Co-authors
Venues