2023
Abstract Groundwater discharge sustains the baseflow of alpine headwater streams, which is critical for water supply and aquatic environments in mountainous regions. Periglacial landforms typical of alpine headwaters (e.g., talus, moraine, rock glacier, alpine meadows) are important aquifers in alpine watersheds. This study examines the hydrological function of an alpine aquifer complex in a small headwater basin in the Canadian Rockies. The aquifer complex consisting of talus, alpine meadow underlain by a bedrock depression, and recessional moraine provided essentially all baseflow of a 6.5 km 2 watershed, even though the upper sub‐watershed containing the aquifer complex occupies only 14% of the watershed. Chemical and isotopic signatures indicated that the recessional moraine serves as a gatekeeper of the upper sub‐watershed, whereby it integrates groundwater components from multiple aquifers and controls the discharge from the outlet springs. Field observation of discharge and the water table in the moraine aquifer showed a nonlinear groundwater storage‐discharge relationship. Numerical groundwater flow models of the upper sub‐watershed showed that the transmissivity feedback resulting from a decrease in hydraulic conductivity with depth was essential for determining the nonlinear storage‐discharge relationship. A simple exponential function was proposed to represent the observed groundwater storage‐discharge relationship, which can be implemented within large‐scale hydrological models to simulate baseflow coming out of alpine headwater regions.
Abstract Groundwater discharge sustains the baseflow of alpine headwater streams, which is critical for water supply and aquatic environments in mountainous regions. Periglacial landforms typical of alpine headwaters (e.g., talus, moraine, rock glacier, alpine meadows) are important aquifers in alpine watersheds. This study examines the hydrological function of an alpine aquifer complex in a small headwater basin in the Canadian Rockies. The aquifer complex consisting of talus, alpine meadow underlain by a bedrock depression, and recessional moraine provided essentially all baseflow of a 6.5 km 2 watershed, even though the upper sub‐watershed containing the aquifer complex occupies only 14% of the watershed. Chemical and isotopic signatures indicated that the recessional moraine serves as a gatekeeper of the upper sub‐watershed, whereby it integrates groundwater components from multiple aquifers and controls the discharge from the outlet springs. Field observation of discharge and the water table in the moraine aquifer showed a nonlinear groundwater storage‐discharge relationship. Numerical groundwater flow models of the upper sub‐watershed showed that the transmissivity feedback resulting from a decrease in hydraulic conductivity with depth was essential for determining the nonlinear storage‐discharge relationship. A simple exponential function was proposed to represent the observed groundwater storage‐discharge relationship, which can be implemented within large‐scale hydrological models to simulate baseflow coming out of alpine headwater regions.
2022
Typical applications of process- or physically-based models aim to gain a better process understanding or provide the basis for a decision-making process. To adequately represent the physical system, models should include all essential processes. However, model errors can still occur. Other than large systematic observation errors, simplified, misrepresented, inadequately parametrised or missing processes are potential sources of errors. This study presents a set of methods and a proposed workflow for analysing errors of process-based models as a basis for relating them to process representations. The evaluated approach consists of three steps: (1) training a machine-learning (ML) error model using the input data of the process-based model and other available variables, (2) estimation of local explanations (i.e., contributions of each variable to an individual prediction) for each predicted model error using SHapley Additive exPlanations (SHAP) in combination with principal component analysis, (3) clustering of SHAP values of all predicted errors to derive groups with similar error generation characteristics. By analysing these groups of different error-variable association, hypotheses on error generation and corresponding processes can be formulated. That can ultimately lead to improvements in process understanding and prediction. The approach is applied to a process-based stream water temperature model HFLUX in a case study for modelling an alpine stream in the Canadian Rocky Mountains. By using available meteorological and hydrological variables as inputs, the applied ML model is able to predict model residuals. Clustering of SHAP values results in three distinct error groups that are mainly related to shading and vegetation-emitted long wave radiation. Model errors are rarely random and often contain valuable information. Assessing model error associations is ultimately a way of enhancing trust in implemented processes and of providing information on potential areas of improvement to the model.
Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake-headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non-advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.
Sustainable groundwater management is founded on the sound understanding of the effects of water extraction on the aquifer water level and the springs and streams receiving groundwater discharge. Pumping test data are commonly used in extraction licence applications to evaluate aquifer properties and assess the magnitude of storage depletion resulting from pumping. However, a short duration (eg 48 hours) pumping test can fail to detect the presence of aquifer boundaries, as the cone of depression is not large enough to reach the boundaries. This may cause an underestimation of long-term drawdown and an overestimation of permissible extraction rate (ie safe yield). In the rural town of Irricana in Alberta, groundwater extraction licences for municipal water supply wells were issued in the early 1980s based on the analysis of 48-hour pumping tests. Actual water extraction rates were substantially below the licensed rates, but the unanticipated and excessive drawdown in the aquifer forced the town to discontinue pumping and switch to surface water supply after 25 years. To examine the cause of overallocation, a new 48-hour pumping test was conducted in the same aquifer, which included an extended drawdown analysis using 26 days of recovery data. Geological formation logs for existing wells in the area surrounding Irricana were used to infer the extent of sandstone aquifer units within the heterogeneous bedrock formation. The new data analysis showed that the aquifer is semi-closed, contrary to the infinite-aquifer assumption used in the original pumping test, which caused additional drawdown due to the aquifer boundary effects. This study suggests an improved procedure for estimation of storage depletion using standard hydrogeological methods and readily available data. The new procedure provides a useful tool as part of adaptive groundwater management, in which water levels and other relevant variables are monitored and licensed extraction rates are adjusted accordingly.
2021
DOI
bib
abs
Synthesis of science: findings on Canadian Prairie wetland drainage
Helen M. Baulch,
Colin J. Whitfield,
Jared D. Wolfe,
Nandita B. Basu,
Angela Bedard‐Haughn,
Kenneth Belcher,
Robert G. Clark,
Grant Ferguson,
Masaki Hayashi,
Andrew Ireson,
Patrick Lloyd‐Smith,
Phil Loring,
John W. Pomeroy,
Kevin Shook,
Christopher Spence,
Helen M. Baulch,
Colin J. Whitfield,
Jared D. Wolfe,
Nandita B. Basu,
Angela Bedard‐Haughn,
Kenneth Belcher,
Robert G. Clark,
Grant Ferguson,
Masaki Hayashi,
Andrew Ireson,
Patrick Lloyd‐Smith,
Phil Loring,
John W. Pomeroy,
Kevin Shook,
Christopher Spence
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 46, Issue 4
Extensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Prairi...
DOI
bib
abs
Synthesis of science: findings on Canadian Prairie wetland drainage
Helen M. Baulch,
Colin J. Whitfield,
Jared D. Wolfe,
Nandita B. Basu,
Angela Bedard‐Haughn,
Kenneth Belcher,
Robert G. Clark,
Grant Ferguson,
Masaki Hayashi,
Andrew Ireson,
Patrick Lloyd‐Smith,
Phil Loring,
John W. Pomeroy,
Kevin Shook,
Christopher Spence,
Helen M. Baulch,
Colin J. Whitfield,
Jared D. Wolfe,
Nandita B. Basu,
Angela Bedard‐Haughn,
Kenneth Belcher,
Robert G. Clark,
Grant Ferguson,
Masaki Hayashi,
Andrew Ireson,
Patrick Lloyd‐Smith,
Phil Loring,
John W. Pomeroy,
Kevin Shook,
Christopher Spence
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 46, Issue 4
Extensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Prairi...
Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream, and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. A tracer test was carried out to estimate hyporheic exchange along the study reach. This study presents a unique example of an indirectly lake-headed stream i.e., where the interaction of groundwater and lake water, and the hydraulic gradient determine the resulting stream temperature. Energy balance of the stream is mainly controlled by radiation. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. Hyporheic exchange is present but plays only a minor role in the energy balance. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.
Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream, and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. A tracer test was carried out to estimate hyporheic exchange along the study reach. This study presents a unique example of an indirectly lake-headed stream i.e., where the interaction of groundwater and lake water, and the hydraulic gradient determine the resulting stream temperature. Energy balance of the stream is mainly controlled by radiation. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. Hyporheic exchange is present but plays only a minor role in the energy balance. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.
DOI
bib
abs
Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity
Stefano Brighenti,
Scott Hotaling,
Debra S. Finn,
Andrew G. Fountain,
Masaki Hayashi,
David B. Herbst,
Jasmine E. Saros,
Lusha M. Tronstad,
Constance I. Millar,
Stefano Brighenti,
Scott Hotaling,
Debra S. Finn,
Andrew G. Fountain,
Masaki Hayashi,
David B. Herbst,
Jasmine E. Saros,
Lusha M. Tronstad,
Constance I. Millar
Global Change Biology, Volume 27, Issue 8
Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present-day environmental conditions will be maintained, at least in the near-term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer-term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research.
DOI
bib
abs
Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity
Stefano Brighenti,
Scott Hotaling,
Debra S. Finn,
Andrew G. Fountain,
Masaki Hayashi,
David B. Herbst,
Jasmine E. Saros,
Lusha M. Tronstad,
Constance I. Millar,
Stefano Brighenti,
Scott Hotaling,
Debra S. Finn,
Andrew G. Fountain,
Masaki Hayashi,
David B. Herbst,
Jasmine E. Saros,
Lusha M. Tronstad,
Constance I. Millar
Global Change Biology, Volume 27, Issue 8
Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present-day environmental conditions will be maintained, at least in the near-term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer-term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro,
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro,
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
DOI
bib
abs
Dual‐permeability modeling of preferential flow and snowmelt partitioning in frozen soils
Aaron A. Mohammed,
Edwin E. Cey,
Masaki Hayashi,
Michael V. Callaghan,
Youngjin Park,
Killian Miller,
Steven K. Frey,
Aaron A. Mohammed,
Edwin E. Cey,
Masaki Hayashi,
Michael V. Callaghan,
Youngjin Park,
Killian Miller,
Steven K. Frey
Vadose Zone Journal, Volume 20, Issue 2
The infiltrability of frozen soils modulates the partitioning of snowmelt between infiltration and runoff in cold regions. Preferential flow in macropores may enhance infiltration, but flow dynamics in frozen soil are complicated by soil heat transfer processes. We developed a dual-permeability model that considers the interacting effects of freeze–thaw and preferential flow on infiltration and runoff generation in structured soils. This formulation was incorporated into the fully integrated groundwater–surface water model HydroGeoSphere, to represent water–ice phase change in macropores such that porewater freezing is governed by macropore–matrix heat exchange. Model performance was evaluated against laboratory experiments and synthetic test cases designed to examine the effects of preferential flow on snowmelt partitioning between infiltration, runoff, and drainage. Simulations were able to reproduce experimental observations of rapid infiltration and drainage behavior due to macropores very well, and approximated soil thaw to an acceptable degree. Simulation of measured data highlighted the importance of macropore hydraulic conductivity, as well as macropore–matrix heat and water transfer, on controlling preferential flow dynamics. Test cases replicated a range of snowmelt partitioning behavior commonly observed in frozen soils, including subsurface conditions that produce rapid infiltration and deeper drainage, the contrast between limited vs. unlimited infiltration responses to snowmelt, and the temporal evolution of runoff generation. This study demonstrates the important influence that water freezing along preferential flowpaths can have on infiltrability and runoff characteristics in frozen soils and provides a physically based description of this mechanism that links infiltration behavior to hydraulic and thermal properties of structured soils.
DOI
bib
abs
Dual‐permeability modeling of preferential flow and snowmelt partitioning in frozen soils
Aaron A. Mohammed,
Edwin E. Cey,
Masaki Hayashi,
Michael V. Callaghan,
Youngjin Park,
Killian Miller,
Steven K. Frey,
Aaron A. Mohammed,
Edwin E. Cey,
Masaki Hayashi,
Michael V. Callaghan,
Youngjin Park,
Killian Miller,
Steven K. Frey
Vadose Zone Journal, Volume 20, Issue 2
The infiltrability of frozen soils modulates the partitioning of snowmelt between infiltration and runoff in cold regions. Preferential flow in macropores may enhance infiltration, but flow dynamics in frozen soil are complicated by soil heat transfer processes. We developed a dual-permeability model that considers the interacting effects of freeze–thaw and preferential flow on infiltration and runoff generation in structured soils. This formulation was incorporated into the fully integrated groundwater–surface water model HydroGeoSphere, to represent water–ice phase change in macropores such that porewater freezing is governed by macropore–matrix heat exchange. Model performance was evaluated against laboratory experiments and synthetic test cases designed to examine the effects of preferential flow on snowmelt partitioning between infiltration, runoff, and drainage. Simulations were able to reproduce experimental observations of rapid infiltration and drainage behavior due to macropores very well, and approximated soil thaw to an acceptable degree. Simulation of measured data highlighted the importance of macropore hydraulic conductivity, as well as macropore–matrix heat and water transfer, on controlling preferential flow dynamics. Test cases replicated a range of snowmelt partitioning behavior commonly observed in frozen soils, including subsurface conditions that produce rapid infiltration and deeper drainage, the contrast between limited vs. unlimited infiltration responses to snowmelt, and the temporal evolution of runoff generation. This study demonstrates the important influence that water freezing along preferential flowpaths can have on infiltrability and runoff characteristics in frozen soils and provides a physically based description of this mechanism that links infiltration behavior to hydraulic and thermal properties of structured soils.
2020
Abstract Groundwater storage in alpine regions is essential for maintaining baseflows in mountain streams. Recent studies have shown that common alpine landforms (e.g., talus and moraine) have substantial groundwater storage capacity, but the hydrogeological connectivity between individual landforms has not been understood. This study characterizes the hydrogeology of an alpine cirque basin in the Canadian Rocky Mountains that contains typical alpine landforms (talus, meadow, moraines) and hydrological features (tarn, streams, and springs). Geological, hydrological, and hydrochemical observations were used to understand the overall hydrogeological setting of the study basin, and three different geophysical methods (electrical resistivity tomography, seismic refraction tomography, and ground penetrating radar) were used to characterize the subsurface structure and connectivity, and to develop a hydrogeological conceptual model. Geophysical imaging shows that the talus is typically 20–40 m thick and highly heterogeneous. The meadow sediments are only up to 11 m thick but are part of a 30–40-m-thick accumulation of unconsolidated material that fills a bedrock overdeepening (i.e. a closed, subglacial basin). A minor, shallow groundwater system feeds springs on the talus and streams on the meadow, whereas a deep system in the moraine supplies most of the water to the basin outlet springs, thereby serving as a ‘gate keeper’ of the basin. Although the hydrologic functions of the talus in this study are substantially different from other locations, primarily due to differences in bedrock lithology and geomorphic processes, the general conceptual framework developed in this study is expected to be applicable to other alpine regions.
In mountain lakes, water transparency is regulated primarily by materials loaded from the surrounding catchment. Consequently, transparency within a lake can vary over time due to meteorological co...
2019
Groundwater discharge in alpine headwaters sustains baseflow in rivers originating in mountain ranges of the world, which is critically important for aquatic habitats, run-of-river hydropower generation, and downstream water supply. Groundwater storage in alpine watersheds was long considered negligible, but recent field-based studies have shown that aquifers are ubiquitous in the alpine zone with no soil and vegetation. Talus, moraine, and rock glacier aquifers are common in many alpine regions of the world, although bedrock aquifers occur in some geological settings. Alpine aquifers consisting of coarse sediments have a fast recession of discharge after the recharge season (e.g., snowmelt) or rainfall events, followed by a slow recession that sustains discharge over a long period. The two-phase recession is likely controlled by the internal structure of the aquifers. Spatial extent and distribution of individual aquifers determine the groundwater storage-discharge characteristics in first- and second-order watersheds in the alpine zone, which in turn govern baseflow characteristics in major rivers. Similar alpine landforms appear to have similar hydrogeological characteristics in many mountain ranges across the world, suggesting that a common conceptual framework can be used to understand alpine aquifers based on geological and geomorphological settings. Such a framework will be useful for parameterizing storage-discharge characteristics in large river hydrological models.
Abstract. The Lake O'Hara watershed in the Canadian Rockies has been the site of several hydrological investigations. It has been instrumented to a degree uncommon for many alpine study watersheds. Air temperature, relative humidity, wind, precipitation, radiation, and snow depth are measured at two meteorological stations near Lake O'Hara and in the higher elevation Opabin Plateau. Water levels at Lake O'Hara, Opabin Lake, and several stream gauging stations are recorded using pressure transducers and validated against manual measurements. Stage–discharge rating curves were determined at gauging stations and used to calculate discharge from stream stage. The database includes additional data such as water chemistry (temperature, electrical conductivity, and stable isotope abundance) and snow survey (snow depth and density) for select years, as well as geospatial data (elevation and land cover). This dataset will be useful for the future study of alpine regions, where substantial and long-term hydrological datasets are scarce due to difficult field conditions. The dataset can be accessed at https://doi.org/10.20383/101.035.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large‐scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500‐km² area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill‐and‐spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high‐resolution DEM coverage, which can still account for terrain variation in the Prairies.
Permafrost distribution in mountains is typically more heterogeneous relative to low‐relief environments due to greater variability in the factors controlling the ground thermal regime, such as topography, snow depth, and sediment grain size (e.g., coarse blocks). Measuring and understanding the geothermal variability in high mountains remains challenging due to logistical constraints. This study presents one of the first applications of distributed temperature sensing (DTS) in periglacial environments to measure ground surface temperatures in a mountain permafrost area at much higher spatial resolution than possible with conventional methods using discrete temperature sensors. DTS measures temperature along a fibre‐optic cable at high spatial resolution (i.e., ≤ 1 m). Its use can be limited by power supply and calibration requirements, although recent methodological developments have relaxed some of these restrictions. Spatially continuous DTS measurements at a studied rock glacier provided greater resolution of geothermal variability and facilitated the interpretation of bottom temperature of snowpack data to map patchy permafrost distribution. This research highlights the potential for DTS to be a useful tool for permafrost mapping, ground thermal regime interpretation, conceptual geothermal model development, and numerical model evaluation in areas of heterogeneous mountain permafrost.
This study evaluates the applicability of the chloride mass balance (CMB) method for groundwater recharge estimation in a semi-arid region in Canada, where recharge largely occurs under topographic depressions. The CMB applicability was tested at three scales: point-scale recharge rates at different topographical positions; average recharge rates incorporating multiple topographical positions on a local scale; and an identification of spatial trends of recharge on a regional scale. Agricultural chloride inputs were shown to be a major factor affecting chloride concentrations at all three scales, where elevated chloride concentrations in the shallow subsurface affected by agricultural inputs surpassed background concentrations by an order of magnitude. The propagation depth of elevated concentrations varied among study sites from being largely confined to the unsaturated zone to extending well into the saturated zone. Lateral chloride redistribution further affected the CMB applicability for point-scale recharge rates. Specific solutions enabling the CMB application in these conditions are presented, including runoff concentration measurements for point-scale estimates, using groundwater age tracers on a local scale, and using the harmonic mean concentration of a large number of samples on a regional scale.
DOI
bib
abs
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
W. L. Quinton,
Aaron Berg,
Michael Braverman,
Olivia Carpino,
L. Chasmer,
Ryan F. Connon,
James R. Craig,
Élise Devoie,
Masaki Hayashi,
Kristine M. Haynes,
David Olefeldt,
Alain Pietroniro,
Fereidoun Rezanezhad,
Robert A. Schincariol,
Oliver Sonnentag
Hydrology and Earth System Sciences, Volume 23, Issue 4
Abstract. Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.
2018
Abstract. Snowpack accumulation and depletion are important elements of the hydrological cycle in the prairies. The surface runoff generated during snowmelt is transformed into streamflow or fills numerous depressions driving the focused recharge of groundwater in this dry setting. The snowpack in the prairies can undergo several cycles of accumulation and depletion in a winter. The timing of the melt affects the mechanisms of snowpack depletion and their hydrological implications. The effects of midwinter melt were investigated at three sites in the Canadian prairies. Unlike net radiation-driven snowmelt during spring melt, turbulent sensible heat fluxes were the dominant source of energy inputs for midwinter melt occurring in the period with low solar radiation inputs. Midwinter melt events had lower runoff ratios than subsequent spring melt events and had strong impacts on the timing of the focussed recharge. Remote sensing data have shown that midwinter melt events regularly occur under the present climate throughout the Canadian prairies.
Measurements of active layer thickness (ALT) are typically taken at the end of summer, a time synonymous with maximum thaw depth. By definition, the active layer is the layer above permafrost that freezes and thaws annually. This study, conducted in peatlands of subarctic Canada, in the zone of thawing discontinuous permafrost, demonstrates that the entire thickness of ground atop permafrost does not always refreeze over winter. In these instances, a talik exists between the permafrost and active layer, and ALT must therefore be measured by the depth of refreeze at the end of winter. As talik thickness increases at the expense of the underlying permafrost, ALT is shown to simultaneously decrease. This suggests that the active layer has a maximum thickness that is controlled by the amount of energy lost from the ground to the atmosphere during winter. The taliks documented in this study are relatively thin (<2 m) and exist on forested peat plateaus. The presence of taliks greatly affects the stability of the underlying permafrost. Vertical permafrost thaw was found to be significantly greater in areas with taliks (0.07 m year−1) than without (0.01 m year−1). Furthermore, the spatial distribution of areas with taliks increased between 2011 and 2015 from 20% to 48%, a phenomenon likely caused by an anomalously large ground heat flux input in 2012. Rapid talik development and accelerated permafrost thaw indicates that permafrost loss may exhibit a nonlinear response to warming temperatures. Documentation of refreeze depths and talik development is needed across the circumpolar north.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.
DOI
bib
abs
Prairie water: a global water futures project to enhance the resilience of prairie communities through sustainable water management
Christopher Spence,
Jared D. Wolfe,
Colin J. Whitfield,
Helen M. Baulch,
N. B. Basu,
Angela Bedard‐Haughn,
Ken Belcher,
Robert G. Clark,
Grant Ferguson,
Masaki Hayashi,
Karsten Liber,
Jeffrey J. McDonnell,
Christy A. Morrissey,
John W. Pomeroy,
Maureen G. Reed,
Graham Strickert
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 44, Issue 2
‘I would walk to the end of the street and out over the prairie with the clickety grasshoppers bunging in arcs ahead of me and I could hear the hum and twang of the wind in the great prairie harp o...
Review highlights the hydrological importance of macropore flow in frozen soils. Governing flow mechanisms and infiltration and refreezing dynamics are discussed. Research is needed to integrate macropore flow and soil freeze–thaw theory. Dual‐domain models of macropore flow should be adapted to frozen ground. A conceptual framework for modeling frozen macroporous soils is proposed.
Ephemeral ponds in depressions are the foci of groundwater recharge in the Canadian Prairies. Freeze–thaw processes influence snowmelt runoff and depression‐focused recharge. A new water balance model was developed to represent these processes. The water balance model successfully simulated the observed soil processes. This model will provide a tool to estimate recharge in the prairie landscape.
Abstract Application of stable isotope methods to evaluate the contribution of different water sources to groundwater recharge relies on the knowledge about isotopic signatures of these sources. The data collected at study sites in the Canadian Prairies show that snowpack isotopic signatures exhibit a high spatial variability over a small scale (
2017
The thermal regimes of alpine streams remain understudied and have important implications for cold-water fish habitat which is expected to decline due to climatic warming. Previous research has focused on the effects of distributed energy fluxes and meltwater from snowpacks and glaciers on the temperature of mountain streams. This study presents the effects of the groundwater spring discharge from an inactive rock glacier containing little ground ice on the temperature of an alpine stream. Rock glaciers are coarse blocky landforms that are ubiquitous in alpine environments and typically exhibit low groundwater discharge temperatures and resilience to climatic warming. Water temperature data indicate that the rock glacier spring cools the stream by an average of 3°C during July and August and reduces maximum daily temperatures by an average of 5°C during the peak temperature period of the first two weeks in August, producing a cold-water refuge downstream of the spring. The distributed stream surface and streambed energy fluxes are calculated for the reach along the toe of the rock glacier, and solar radiation dominates the distributed stream energy budget. The lateral advective heat flux generated by the rock glacier spring is compared to the distributed energy fluxes over the study reach, and the spring advective heat flux is the dominant control on stream temperature at the reach scale. This study highlights the potential for coarse blocky landforms to generate climatically-resilient cold-water refuges in alpine streams.