Mathew Herrnegger


2022

DOI bib
Learning from mistakes—Assessing the performance and uncertainty in process‐based models
Moritz Feigl, Benjamin Roesky, Mathew Herrnegger, Karsten Schulz, Masaki Hayashi
Hydrological Processes, Volume 36, Issue 2

Typical applications of process- or physically-based models aim to gain a better process understanding or provide the basis for a decision-making process. To adequately represent the physical system, models should include all essential processes. However, model errors can still occur. Other than large systematic observation errors, simplified, misrepresented, inadequately parametrised or missing processes are potential sources of errors. This study presents a set of methods and a proposed workflow for analysing errors of process-based models as a basis for relating them to process representations. The evaluated approach consists of three steps: (1) training a machine-learning (ML) error model using the input data of the process-based model and other available variables, (2) estimation of local explanations (i.e., contributions of each variable to an individual prediction) for each predicted model error using SHapley Additive exPlanations (SHAP) in combination with principal component analysis, (3) clustering of SHAP values of all predicted errors to derive groups with similar error generation characteristics. By analysing these groups of different error-variable association, hypotheses on error generation and corresponding processes can be formulated. That can ultimately lead to improvements in process understanding and prediction. The approach is applied to a process-based stream water temperature model HFLUX in a case study for modelling an alpine stream in the Canadian Rocky Mountains. By using available meteorological and hydrological variables as inputs, the applied ML model is able to predict model residuals. Clustering of SHAP values results in three distinct error groups that are mainly related to shading and vegetation-emitted long wave radiation. Model errors are rarely random and often contain valuable information. Assessing model error associations is ultimately a way of enhancing trust in implemented processes and of providing information on potential areas of improvement to the model.

2019

DOI bib
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
Günter Blöschl, Marc F. P. Bierkens, António Chambel, Christophe Cudennec, Georgia Destouni, Aldo Fiori, James W. Kirchner, Jeffrey J. McDonnell, H. H. G. Savenije, Murugesu Sivapalan, Christine Stumpp, Elena Toth, Elena Volpi, Gemma Carr, Claire Lupton, José Luis Salinas, Borbála Széles, Alberto Viglione, Hafzullah Aksoy, Scott T. Allen, Anam Amin, Vazken Andréassian, Berit Arheimer, Santosh Aryal, Victor R. Baker, W.E. Bardsley, Marlies Barendrecht, Alena Bartošová, Okke Batelaan, Wouter R. Berghuijs, Keith Beven, Theresa Blume, Thom Bogaard, Pablo Borges de Amorim, Michael E. Böttcher, Gilles Boulet, Korbinian Breinl, Mitja Brilly, Luca Brocca, Wouter Buytaert, Attilio Castellarin, Andrea Castelletti, Xiaohong Chen, Yangbo Chen, Yuanfang Chen, Peter Chifflard, Pierluigi Claps, Martyn Clark, Adrian L. Collins, Barry Croke, Annette Dathe, Paula Cunha David, Felipe P. J. de Barros, Gerrit H. de Rooij, Giuliano Di Baldassarre, Jessica M. Driscoll, Doris Duethmann, Ravindra Dwivedi, Ebru Eriş, William Farmer, James Feiccabrino, Grant Ferguson, Ennio Ferrari, Stefano Ferraris, Benjamin Fersch, David C. Finger, Laura Foglia, Keirnan Fowler, Б. И. Гарцман, Simon Gascoin, Éric Gaumè, Alexander Gelfan, Josie Geris, Shervan Gharari, Tom Gleeson, Miriam Glendell, Alena Gonzalez Bevacqua, María P. González-Dugo, Salvatore Grimaldi, A.B. Gupta, Björn Guse, Dawei Han, David M. Hannah, A. A. Harpold, Stefan Haun, Kate V. Heal, Kay Helfricht, Mathew Herrnegger, Matthew R. Hipsey, Hana Hlaváčiková, Clara Hohmann, Ladislav Holko, Christopher Hopkinson, Markus Hrachowitz, Tissa H. Illangasekare, Azhar Inam, Camyla Innocente dos Santos, Erkan Istanbulluoglu, Ben Jarihani, Zahra Kalantari, Andis Kalvāns, Sonu Khanal, Sina Khatami, Jens Kiesel, M. J. Kirkby, Wouter Knoben, Krzysztof Kochanek, Silvia Kohnová, Alla Kolechkina, Stefan Krause, David K. Kreamer, Heidi Kreibich, Harald Kunstmann, Holger Lange, Margarida L. R. Liberato, Eric Lindquist, Timothy E. Link, Junguo Liu, Daniel P. Loucks, Charles H. Luce, Gil Mahé, Olga Makarieva, Julien Malard, Shamshagul Mashtayeva, Shreedhar Maskey, Josep Mas‐Pla, Maria Mavrova-Guirguinova, Maurizio Mazzoleni, Sebastian H. Mernild, Bruce Dudley Misstear, Alberto Montanari, Hannes Müller‐Thomy, Alireza Nabizadeh, Fernando Nardi, Christopher M. U. Neale, Nataliia Nesterova, Bakhram Nurtaev, Vincent Odongo, Subhabrata Panda, Saket Pande, Zhonghe Pang, Georgia Papacharalampous, Charles Perrin, Laurent Pfister, Rafael Pimentel, María José Polo, David Post, Cristina Prieto, Maria‐Helena Ramos, Maik Renner, José Eduardo Reynolds, Elena Ridolfi, Riccardo Rigon, Mònica Riva, David Robertson, R. Rosso, Tirthankar Roy, João Henrique Macedo Sá, Gianfausto Salvadori, Melody Sandells, Bettina Schaefli, Andreas Schumann, Anna Scolobig, Jan Seibert, Éric Servat, Mojtaba Shafiei, Ashish Sharma, Moussa Sidibé, Roy C. Sidle, Thomas Skaugen, Hugh G. Smith, Sabine M. Spiessl, Lina Stein, Ingelin Steinsland, Ulrich Strasser, Zhongbo Su, Ján Szolgay, David G. Tarboton, Flavia Tauro, Guillaume Thirel, Fuqiang Tian, Rui Tong, Kamshat Tussupova, Hristos Tyralis, R. Uijlenhoet, Rens van Beek, Ruud van der Ent, Martine van der Ploeg, Anne F. Van Loon, Ilja van Meerveld, Ronald van Nooijen, Pieter van Oel, Jean‐Philippe Vidal, Jana von Freyberg, Sergiy Vorogushyn, Przemysław Wachniew, Andrew J. Wade, Philip J. Ward, Ida Westerberg, Christopher J. White, Eric F. Wood, Ross Woods, Zongxue Xu, Koray K. Yılmaz, Yongqiang Zhang
Hydrological Sciences Journal, Volume 64, Issue 10

This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
Search
Co-authors
Venues