2024
2023
DOI
bib
abs
Leveraging google earth engine cloud computing for large-scale arctic wetland mapping
Michael Merchant,
Brian Brisco,
Masoud Mahdianpari,
Laura Bourgeau‐Chavez,
Kevin Murnaghan,
Ben DeVries,
Aaron Berg,
Michael Merchant,
Brian Brisco,
Masoud Mahdianpari,
Laura Bourgeau‐Chavez,
Kevin Murnaghan,
Ben DeVries,
Aaron Berg
International Journal of Applied Earth Observation and Geoinformation, Volume 125
Climate-driven permafrost degradation and an intensification of the hydrological cycle are rapidly altering the intricate ecohydrological processes of Arctic wetlands, threatening their long-term carbon sequestration capabilities. Addressing this concern through effective management holds immense potential for climate regulation, mitigation, and adaptation efforts. As such, there is growing need for timely spatial inventory data identifying Arctic wetlands with sufficient accuracy, resolution, and detail. Wetland mapping at large scales necessitates the processing of large volumes of Earth observation (EO) data, a challenge known as "Big Data". Consequently, in this study, we present a cloud-based methodology exploiting the remarkable collection of EO data and computational power of Google Earth Engine (GEE) to map Arctic wetlands at 10 m spatial resolution. Our workflow evaluated temporally aggregated optical and radar satellite imagery and novel hydro-physiographic layers as inputs into a robust Random Forest (RF) machine learning (ML) algorithm. Both pixel and object-based classification approaches were assessed, whereby ML models were calibrated with a training dataset of sufficient and comprehensive samples. The study was conducted over Canada's Southern Arctic ecozone (830,000 km2). GEE enabled the efficient preprocessing and classification of large volumes of EO data and resulted in excellent yet similar statistical performance for both pixel and object-based approaches, achieving overall accuracies of > 89 % and mean F1-scores of > 0.79. Moreover, McNemar tests indicated that these classifications were not statistically different, which has significant implications regarding computing time and processing efficiencies. These results demonstrate the efficacy and scalability of our cloud-based GEE methodology, and as such can support future endeavors around Pan-Arctic wetland mapping and monitoring.
DOI
bib
abs
Leveraging google earth engine cloud computing for large-scale arctic wetland mapping
Michael Merchant,
Brian Brisco,
Masoud Mahdianpari,
Laura Bourgeau‐Chavez,
Kevin Murnaghan,
Ben DeVries,
Aaron Berg,
Michael Merchant,
Brian Brisco,
Masoud Mahdianpari,
Laura Bourgeau‐Chavez,
Kevin Murnaghan,
Ben DeVries,
Aaron Berg
International Journal of Applied Earth Observation and Geoinformation, Volume 125
Climate-driven permafrost degradation and an intensification of the hydrological cycle are rapidly altering the intricate ecohydrological processes of Arctic wetlands, threatening their long-term carbon sequestration capabilities. Addressing this concern through effective management holds immense potential for climate regulation, mitigation, and adaptation efforts. As such, there is growing need for timely spatial inventory data identifying Arctic wetlands with sufficient accuracy, resolution, and detail. Wetland mapping at large scales necessitates the processing of large volumes of Earth observation (EO) data, a challenge known as "Big Data". Consequently, in this study, we present a cloud-based methodology exploiting the remarkable collection of EO data and computational power of Google Earth Engine (GEE) to map Arctic wetlands at 10 m spatial resolution. Our workflow evaluated temporally aggregated optical and radar satellite imagery and novel hydro-physiographic layers as inputs into a robust Random Forest (RF) machine learning (ML) algorithm. Both pixel and object-based classification approaches were assessed, whereby ML models were calibrated with a training dataset of sufficient and comprehensive samples. The study was conducted over Canada's Southern Arctic ecozone (830,000 km2). GEE enabled the efficient preprocessing and classification of large volumes of EO data and resulted in excellent yet similar statistical performance for both pixel and object-based approaches, achieving overall accuracies of > 89 % and mean F1-scores of > 0.79. Moreover, McNemar tests indicated that these classifications were not statistically different, which has significant implications regarding computing time and processing efficiencies. These results demonstrate the efficacy and scalability of our cloud-based GEE methodology, and as such can support future endeavors around Pan-Arctic wetland mapping and monitoring.
2022
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective for characterizing Arctic tundra landscapes due to the unique backscattering signatures associated with different cover types. However, recently, there has been increased interest in exploiting novel interferometric SAR (InSAR) techniques that rely on both the amplitude and absolute phase of a pair of acquisitions to produce coherence measurements, although the simultaneous use of both intensity and interferometric coherence in Arctic tundra image classification has not been widely tested. In this study, a time series of dual-polarimetric (VV, VH) Sentinel-1 SAR/InSAR data collected over one growing season, in addition to a digital elevation model (DEM), was used to characterize an Arctic tundra study site spanning a hydrologically dynamic coastal delta, open tundra, and high topographic relief from mountainous terrain. SAR intensity and coherence patterns based on repeat-pass interferometry were analyzed in terms of ecological structure (i.e., graminoid, or woody) and hydrology (i.e., wet, or dry) using machine learning methods. Six hydro-ecological cover types were delineated using time-series statistical descriptors (i.e., mean, standard deviation, etc.) as model inputs. Model evaluations indicated SAR intensity to have better predictive power than coherence, especially for wet landcover classes due to temporal decorrelation. However, accuracies improved when both intensity and coherence were used, highlighting the complementarity of these two measures. Combining time-series SAR/InSAR data with terrain derivatives resulted in the highest per-class F1 score values, ranging from 0.682 to 0.955. The developed methodology is independent of atmospheric conditions (i.e., cloud cover or sunlight) as it does not rely on optical information, and thus can be regularly updated over forthcoming seasons or annually to support ecosystem monitoring.