Mike D. Flannigan


2022

DOI bib
Mapping organic layer thickness and fuel load of the boreal forest in Alberta, Canada
Chelene C. Hanes, Mike Wotton, Douglas G. Woolford, David L. Martell, Mike D. Flannigan
Geoderma, Volume 417

• Maps of organic layer thickness and fuel load were developed using machine learning. • Tree species was the most important variable in the final random forest model. • Error in our final models was close to the natural variability we expected to find. • The resultant maps will help improve fuel consumption models. Forest organic layers are important soil carbon pools that can, in the absence of disturbance, accumulate to great depths, especially in lowland areas. Across the Canadian boreal forest, fire is the primary disturbance agent, often limiting organic layer accumulation through the direct consumption of these fuels. Organic layer thickness (OLT) and fuel load (OLFL) are common physical attributes used to characterize these layers, especially for wildland fire science. Understanding the drivers and spatial distribution of these attributes is important to improve predictions of fire behaviour, emissions and effects models. We developed maps of OLT and OLFL using machine learning approaches (weighted K-nearest neighbour and random forests) for the forested region of the province of Alberta, Canada (538, 058 km 2 ). The random forests approach was found to be the best approach to model the spatial distribution of these forest floor attributes. A databased of 3, 237 OLT and 594 OLFL plots were used to train the models. The error in our final model, particularly for OLT (5 cm), was relatively close to the variability we would expect to find naturally (3 cm). The dominant tree species was the most important covariate in the models. Age, solar radiation, spatial location, climate variables and surficial geology were also important drivers, although their level of importance varied between tree species and depended on the modelling method that was used.

2019

DOI bib
Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest Across a Burn Severity Gradient
Thea Whitman, Ellen Whitman, Jamie Woolet, Mike D. Flannigan, Dan K. Thompson, Marc‐André Parisien

Global fire regimes are changing, with increases in wildfire frequency and severity expected for many North American forests over the next 100 years. Fires can result in dramatic changes to C stocks and can restructure plant and microbial communities, which can have long-lasting effects on ecosystem functions. We investigated wildfire effects on soil microbial communities (bacteria and fungi) in an extreme fire season in the northwestern Canadian boreal forest, using field surveys, remote sensing, and high-throughput amplicon sequencing. We found that fire occurrence, along with vegetation community, moisture regime, pH, total carbon, and soil texture are all significant predictors of soil microbial community composition. Communities become increasingly dissimilar with increasingly severe burns, and the burn severity index (an index of the fractional area of consumed organic soils and exposed mineral soils) best predicted total bacterial community composition, while burned/unburned was the best predictor for fungi. Globally abundant taxa were identified as significant positive fire responders, including the bacteria Massilia sp. (64x more abundant with fire) and Arthrobacter sp. (35x), and the fungi Penicillium sp. (22x) and Fusicladium sp. (12x) Bacterial and fungal co-occurrence network modules were characterized by fire responsiveness as well as pH and moisture regime. Building on the efforts of previous studies, our results identify specific fire-responsive microbial taxa and suggest that accounting for burn severity improves our understanding of their response to fires, with potentially important implications for ecosystem functions.

DOI bib
Scientists’ warning on wildfire — a Canadian perspective
Sean C. P. Coogan, François Robinne, Piyush Jain, Mike D. Flannigan
Canadian Journal of Forest Research, Volume 49, Issue 9

Recently, the World Scientists’ Warning to Humanity: a Second Notice was issued in response to ongoing and largely unabated environmental degradation due to anthropogenic activities. In the warning, humanity is urged to practice more environmentally sustainable alternatives to business as usual to avoid potentially catastrophic outcomes. Following the success of their warning, the Alliance of World Scientists called for discipline-specific follow-up papers. This paper is an answer to that call for the topic of wildland fire. Across much of Canada and the world, wildfires are anticipated to increase in severity and frequency in response to anthropogenic activities. The world scientists’ second warning provides the opportunity for wildland fire researchers to raise the profile of the potential impacts that anthropogenic activities are likely to have on future fire regimes and, in return, what impacts future fire regimes may have on humanity. We discuss how wildfire is related to several issues of concern raised in the world scientists’ second warning, including climate change, human population growth, biodiversity and forests, and freshwater availability. Furthermore, we touch on the potential future health impacts and challenges to wildfire suppression and management in Canada. In essence, our wildfire scientists’ warning to humanity is that we, as a society, will have to learn to live with more fire on the landscape. We provide some recommendations on how we might move forward to prepare for and adapt to future wildfire regimes in Canada. Although this paper is primarily Canadian in focus, the concepts and information herein also draw from international examples and are of relevance globally.

DOI bib
An Assessment of Surface and Atmospheric Conditions Associated with the Extreme 2014 Wildfire Season in Canada’s Northwest Territories
Bohdan Kochtubajda, Ronald E. Stewart, Mike D. Flannigan, Barrie Bonsal, Charles Cuell, Curtis Mooney
Atmosphere-Ocean, Volume 57, Issue 1

Weather and climate are major factors influencing worldwide wildfire activity. This study assesses surface and atmospheric conditions associated with the 2014 extreme wildfires in the Northwest Ter...

DOI bib
A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires
François Robinne, Kevin D. Bladon, U. Silins, Monica B. Emelko, Mike D. Flannigan, Marc‐André Parisien, Xianli Wang, S. W. Kienzle, Diane Dupont
Forests, Volume 10, Issue 5

Recent human-interface wildfires around the world have raised concerns regarding the reliability of freshwater supply flowing from severely burned watersheds. Degraded source water quality can often be expected after severe wildfire and can pose challenges to drinking water facilities by straining treatment response capacities, increasing operating costs, and jeopardizing their ability to supply consumers. Identifying source watersheds that are dangerously exposed to post-wildfire hydrologic changes is important for protecting community drinking-water supplies from contamination risks that may lead to service disruptions. This study presents a spatial index of watershed exposure to wildfires in the province of Alberta, Canada, where growing water demands coupled with increasing fire activity threaten municipal drinking-water supplies. Using a multi-criteria analysis design, we integrated information regarding provincial forest cover, fire danger, source water volume, source-water origin (i.e., forested/un-forested), and population served. We found that (1) >2/3 of the population of the province relies on drinking-water supplies originating in forested watersheds, (2) forest cover is the most important variable controlling final exposure scores, and (3) watersheds supplying small drinking water treatment plants are particularly exposed, especially in central Alberta. The index can help regional authorities prioritize the allocation of risk management resources to mitigate adverse impacts from wildfire. The flexible design of this tool readily allows its deployment at larger national and continental scales to inform broader water security frameworks.

DOI bib
Could restoration of a landscape to a pre-European historical vegetation condition reduce burn probability?
Christopher A. Stockdale, Neal McLoughlin, Mike D. Flannigan, S. Ellen Macdonald
Ecosphere, Volume 10, Issue 2

Montane regions throughout western North America have experienced increases in forest canopy closure and forest encroachment into grasslands over the past century; this has been attributed to climate change and fire suppression/exclusion. These changes threaten ecological values and potentially increase probabilities of intense wildfire. Restoration of landscapes to historical conditions has been proposed as a potential solution. We used historical oblique photographs of an area in the Rocky Mountains of Alberta, Canada, to determine the vegetation composition in 1909 and then asked whether restoration to a historical vegetation condition would: (1) reduce the overall burn probability of fire; (2) reduce the probability of high-intensity fires; and (3) change the spatial pattern of burn probabilities, as compared to current conditions. We used the Burn-P3 model to calculate the overall and high-intensity burn probabilities in two scenarios: (1) the baseline (current (2014) vegetation composition) and (2) historical restoration (vegetation in the study area as of 1909 with the surrounding landscape in its current condition). In the baseline, the landscape had 50% less grassland and more coniferous forest than 100 yr ago. Except for the fuel grids, we ensured all input parameters (number and locations of ignitions, weather conditions, etc.) were identical between the two scenarios; therefore, any differences in outputs are solely attributable to the changed fuels. The historical restoration scenario reduced the overall burn probability by only 1.3%, but the probability of high-intensity wildfires was reduced by nearly half (44.2%), as compared to the baseline scenario. There were also differences in the spatial pattern of overall burn probabilities between the two scenarios. While 6.7% of the landscape burned with half (or less) the probability in the restoration scenario (compared to the baseline), other areas (3.2%) had burn probabilities two to five times higher. More than 21.5% had high-intensity burn probabilities that were 20% or less of those in the baseline scenario. Differences in burn probabilities between the two scenarios were largely attributable to the effects of the vegetation difference on rate of fire spread. Restoration to historical vegetation structure significantly lowered wildfire risk to the landscape.

2018

DOI bib
Potential impacts of climate change on the habitat of boreal woodland caribou
Quinn E. Barber, Marc‐André Parisien, Ellen Whitman, Diana Stralberg, Chris J. Johnson, Martin‐Hugues St‐Laurent, Evan R. DeLancey, David T. Price, Dominique Arseneault, Xianli Wang, Mike D. Flannigan
Ecosphere, Volume 9, Issue 10

Boreal woodland caribou (Rangifer tarandus caribou) are currently listed as threatened in Canada, with populations in the province of Alberta expected to decline as much as 50 percent over the next 8–15 yr. We assessed the future of caribou habitat across a region of northeast Alberta using a model of habitat-quality and projections of future climate from three general circulation models. We used mapped climatic and topo-edaphic properties to project future upland vegetation cover and a fire simulation model to project the frequency and extent of wildfires. Based on those projections, we quantified the future habitat of caribou according to estimates of nutritional resources and predation risk derived from vegetation cover type and stand age. Grassland vegetation covered up to half of the study area by the 2080s, expanding from >1% in the present and contributing to a significant contraction in mixedwood and coniferous forests. This change in vegetation would increase the risk of predation and disease, as habitat becomes more suitable for white-tailed deer (Odocoileus virginianus) and, consequently, gray wolves (Canis lupus). Borne out, these changes would severely compromise the long-term persistence of caribou in the boreal forest of Alberta.

DOI bib
Wildfire as a major driver of recent permafrost thaw in boreal peatlands
Carolyn Gibson, L. Chasmer, Dan K. Thompson, William L. Quinton, Mike D. Flannigan, David Olefeldt
Nature Communications, Volume 9, Issue 1

Permafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.

DOI bib
Determination of fire risk to assist fire management for insular areas: the case of a small Greek island
Stavros Sakellariou, Stergios Tampekis, Fani Samara, Mike D. Flannigan, Dirk Jaeger, Olga Christopoulou, Athanassios Sfougaris
Journal of Forestry Research, Volume 30, Issue 2

Forest fire risk estimation constitutes an essential process to prevent high-intensity fires which are associated with severe implications to the natural and cultural environment. The primary aim of this research was to determine fire risk levels based on the local features of an island, namely, the impact of fuel structures, slope, aspects, as well as the impact of the road network and inhabited regions. The contribution of all the involved factors to forest fires ignition and behavior highlight certain regions which are highly vulnerable. In addition, the influence of both natural and anthropogenic factors to forest fire phenomena is explored. In this study, natural factors play a dominant role compared to anthropogenic factors. Hence essential preventative measures must focus on specific areas and established immediately. Indicative measures may include: the optimal allocation of watchtowers as well as the spatial optimization of mobile firefighting vehicles; and, forest fuel treatments in areas characterized by extremely high fire risk. The added value of this fire prediction tool is that it is highly flexible and could be adopted elsewhere with the necessary adjustments to local characteristics.

DOI bib
Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?
Sophie Wilkinson, Paul A. Moore, Mike D. Flannigan, B. M. Wotton, J. M. Waddington
Environmental Research Letters, Volume 13, Issue 1

Climate change mediated drying of boreal peatlands is expected to enhance peatland afforestation and wildfire vulnerability. The water table depth–afforestation feedback represents a positive feedback that can enhance peat drying and consolidation and thereby increase peat burn severity; exacerbating the challenges and costs of wildfire suppression efforts and potentially shifting the peatland to a persistent source of atmospheric carbon. To address this wildfire management challenge, we examined burn severity across a gradient of drying in a black spruce dominated peatland that was partially drained in 1975−1980 and burned in the 2016 Fort McMurray Horse River wildfire. We found that post-drainage black spruce annual ring width increased substantially with intense drainage. Average (±SD) basal diameter was 2.6 ± 1.2 cm, 3.2 ± 2.0 cm and 7.9 ± 4.7 cm in undrained (UD), moderately drained (MD) and heavily drained (HD) treatments, respectively. Depth of burn was significantly different between treatments (p < 0.001) and averaged (±SD) 2.5 ± 3.5 cm, 6.4 ± 5.0 cm and 36.9 ± 29.6 cm for the UD, MD and HD treatments, respectively. The high burn severity in the HD treatment included 38% of the treatment that experienced combustion of the entire peat profile, and we estimate that overall 51% of the HD pre-burn peat carbon stock was lost. We argue that the HD treatment surpassed an ecohydrological tipping point to high severity peat burn that may be identified using black spruce stand characteristics in boreal plains bogs. While further studies are needed, we believe that quantifying this threshold will aid in developing effective adaptive management techniques and protecting boreal peatland carbon stocks.