2021
A vector‐river network explicitly uses realistic geometries of river reaches and catchments for spatial discretization in a river model. This enables improving the accuracy of the physical properties of the modeled river system, compared to a gridded river network that has been used in Earth System Models. With a finer‐scale river network, resolving smaller‐scale river reaches, there is a need for efficient methods to route streamflow and its constituents throughout the river network. The purpose of this study is twofold: (1) develop a new method to decompose river networks into hydrologically independent tributary domains, where routing computations can be performed in parallel; and (2) perform global river routing simulations with two global river networks, with different scales, to examine the computational efficiency and the differences in discharge simulations at various temporal scales. The new parallelization method uses a hierarchical decomposition strategy, where each decomposed tributary is further decomposed into many sub‐tributary domains, enabling hybrid parallel computing. This parallelization scheme has excellent computational scaling for the global domain where it is straightforward to distribute computations across many independent river basins. However, parallel computing for a single large basin remains challenging. The global routing experiments show that the scale of the vector‐river network has less impact on the discharge simulations than the runoff input that is generated by the combination of land surface model and meteorological forcing. The scale of vector‐river networks needs to consider the scale of local hydrologic features such as lakes that are to be resolved in the network.
2020
Abstract Soil Moisture (SM) is a direct measure of agricultural drought. While there are several global SM indices, none of them directly use SM observations in a near-real-time capacity and as an operational tool. This paper presents a near-real-time global SM index monitor based on integrated SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) remote sensing data. We make use of the short period (2015–2018) of SMAP datasets in combination with two approaches—Cumulative Distribution Function Mapping (CDFM) and Bayesian conditional process—and integrate them with SMOS data in a way that SMOS data is consistent with SMAP. The integrated SMOS and SMAP (SMOS/SMAP) has an increased global revisit frequency and a period of record from 2010 to the present. A four-parameter Beta distribution was fitted to the SMOS/SMAP dataset for each calendar month of each grid cell at ~36 km resolution for the period from 2010 to 2018. We used an asymptotic method that guarantees the values of the bounding parameters of the Beta distribution will envelop both the smallest and largest observed values. The Kolmogorov-Smirnov (KS) test showed that more grids globally will pass if the integrated dataset is from the Bayesian conditional approach. A daily global SM index map is generated and posted online based on translating each grid's integrated SM value for that day to a corresponding probability percentile relevant to the particular calendar month from 2010 to 2018. For validation, we use the Canadian Prairies Ecozone (CPE). We compare the integrated SM with the SMAP core validation and RISMA sites from ISMN, compare our indices with other models (VIC, ESA's CCI SM v04.4 integrated satellite data, and SPI-1), and make a two-by-two comparison of candidate indices using heat maps and summary CDF statistics. Furthermore, we visually compare our global SM-based index maps with those produced by other organizations. Our Global SM Index Monitor (GSMIM) performed, in many tests, similarly to the CCI's product SM index but with the advantage of being a near-real-time tool, which has applications for identifying evolving drought for food security conditions, insurance, policymaking, and crop planning especially for the remote parts of the globe.
DOI
bib
abs
Underlying Fundamentals of Kalman Filtering for River Network Modeling
Charlotte Emery,
Cédric H. David,
Konstantinos M. Andreadis,
M. Turmon,
J. T. Reager,
Jonathan Hobbs,
Ming Pan,
J. S. Famiglietti,
R. Edward Beighley,
Matthew Rodell
Journal of Hydrometeorology, Volume 21, Issue 3
Abstract The grand challenge of producing hydrometeorological estimates every time and everywhere has motivated the fusion of sparse observations with dense numerical models, with a particular interest on discharge in river modeling. Ensemble methods are largely preferred as they enable the estimation of error properties, but at the expense of computational load and generally with underestimations. These imperfect stochastic estimates motivate the use of correction methods, that is, error localization and inflation, although the physical justifications for their optimality are limited. The purpose of this study is to use one of the simplest forms of data assimilation when applied to river modeling and reveal the underlying mechanisms impacting its performance. Our framework based on assimilating daily averaged in situ discharge measurements to correct daily averaged runoff was tested over a 4-yr case study of two rivers in Texas. Results show that under optimal conditions of inflation and localization, discharge simulations are consistently improved such that the mean values of Nash–Sutcliffe efficiency are enhanced from −11.32 to 0.55 at observed gauges and from −12.24 to −1.10 at validation gauges. Yet, parameters controlling the inflation and the localization have a large impact on the performance. Further investigations of these sensitivities showed that optimal inflation occurs when compensating exactly for discrepancies in the magnitude of errors while optimal localization matches the distance traveled during one assimilation window. These results may be applicable to more advanced data assimilation methods as well as for larger applications motivated by upcoming river-observing satellite missions, such as NASA’s Surface Water and Ocean Topography mission.
2019
DOI
bib
abs
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates
O. Chegwidden,
Bart Nijssen,
David E. Rupp,
Jeffrey R. Arnold,
Martyn P. Clark,
Joseph Hamman,
Shih‐Chieh Kao,
Yixin Mao,
Naoki Mizukami,
Philip W. Mote,
Ming Pan,
Erik Pytlak,
Mu Xiao
Earth's Future, Volume 7, Issue 6
Methodological choices can have strong effects on projections of climate change impacts on hydrology. In this study, we investigate the ways in which four different steps in the modeling chain influence the spread in projected changes of different aspects of hydrology. To form the basis of these analyses, we constructed an ensemble of 160 simulations from permutations of two Representative Concentration Pathways, 10 global climate models, two downscaling methods, and four hydrologic model implementations. The study is situated in the Pacific Northwest of North America, which has relevance to a diverse, multinational cast of stakeholders. We analyze the effects of each modeling decision on changes in gridded hydrologic variables of snow water equivalent and runoff, as well as streamflow at point locations. Results show that the choice of representative concentration pathway or global climate model is the driving contributor to the spread in annual streamflow volume and timing. On the other hand, hydrologic model implementation explains most of the spread in changes in low flows. Finally, by grouping the results by climate region the results have the potential to be generalized beyond the Pacific Northwest. Future hydrologic impact assessments can use these results to better tailor their modeling efforts.