Myroslava Khomik


2022

DOI bib
Vegetation‐related influences on carbon and water dynamics of two temperate forage crops
Kevin De Haan, Myroslava Khomik, Richard M. Petrone
Agronomy Journal, Volume 114, Issue 3

Improving understanding of how water use efficiency (WUE), evapotranspiration (ET), and gross primary productivity (GPP) (CO2 exchange) vary across agricultural systems can help farmers better prepare for an uncertain future due to climate change by assessing water requirements for a crop as a function of current environmental conditions. This study: (a) quantified field-scale plant–water–carbon dynamics for silage maize (Zea mays L.) and alfalfa (Medicago sativa L.) crops – two dominant forage crops in southern Ontario, Canada; and (b) identified differences in plant carbon–water dynamics between these two crops, relating these differences to vegetation-driven ecosystem controls. Climate and soil properties were similar between the two study sites, and water availability was not limiting, suggesting that the overall temporal differences in carbon–water relations were driven by vegetation differences, mainly crop choice and management practices. Alfalfa had greater seasonal GPP, ET, and WUE than maize, due to a longer growing season. Differences in daily WUE between maize and alfalfa were driven by differences in GPP rather than ET. Multiple harvests reduced leaf-aging effects and promoted periods of rapid growth in alfalfa. In contrast, late seedling emergence and self-shading reduced GPP in maize. Under a warmer future climate, crop selection (i.e., perennial vs. annual), harvest regimes, and changes in growing season length should be considered when trying to manage for increased WUE. However, longer duration studies to validate these results are required to better address the impacts of climatic variability—especially antecedent conditions—to better inform future crop choices within a climate change context.

DOI bib
Analysis of growing season carbon and water fluxes of a subalpine wetland in the Canadian Rocky Mountains: Implications of shade on ecosystem water use efficiency
Dylan M. Hrach, A. Green, Myroslava Khomik, Richard M. Petrone
Hydrological Processes, Volume 36, Issue 1

Mountain regions are an important regulator in the global water cycle through their disproportionate water contribution. Often referred to as the “Water Towers of the World”, mountains contribute 40%–60% of the world's annual surface flow. Shade is a common feature in mountains, where complex terrain cycles land surfaces in and out of shadows over daily and seasonal scales, which can impact water use. This study investigated the turbulent water and carbon dioxide (CO2) fluxes during the snow‐free period in a subalpine wetland in the Canadian Rocky Mountains, from 7 June to 10 September 2018. Shading had a significant and substantial effect on water and CO2 fluxes at our site. When considering data from the entire study period, each hourly increase of shade per day reduced evapotranspiration (ET) and gross primary production (GPP) by 0.42 mm and 0.77 g C m−2, equivalent to 17% and 15% per day, respectively. However, the variability in shading changed throughout the study, it was stable to start and increased towards the end. Only during the peak growing season, the site experienced days with both stable and increasing shade. During this time, we found that shade, caused by the local complex terrain, reduced ET and potentially increased GPP, likely due to enhanced diffuse radiation. The overall result was greater water use efficiency during periods of increased shading in the peak growing season. These findings suggest that shaded subalpine wetlands can store large volumes of water for late season runoff and are productive through short growing seasons.

DOI bib
Assessment of effective LAI and water use efficiency using Eddy Covariance data
Mazda Kompani-Zare, Richard M. Petrone, Merrin L. Macrae, Kevin De Haan, Myroslava Khomik
Science of The Total Environment, Volume 802

Globally, maize ( Zea mays , a C4-plant) and alfalfa ( Medicago sativa , a C3-plant) are common and economically important crops. Predicting the response of their water use efficiency, WUE , to changing hydrologic and climatic conditions is vital in helping farmers adapt to a changing climate. In this study, we assessed the effective leaf area index ( eLAI - the leaf area most involved in CO 2 and H 2 O exchange) and stomatal conductance in canopy scale in maize and alfalfa fields. In the process we used a theoretically-based photosynthesis C3-C4 model (C3C4PM) and carbon and water vapour fluxes measured by Eddy Covariance towers at our study sites. We found that in our study sites the eLAI was in the range of 25–32% of the observed total LAI in these crops. WUE s were in range of 8–9 mmol/mol. C3C4PM can be used in predictions of stomatal conductance and eLAI responses in C3 and C4 agricultural crops to elevated CO 2 concentration and changes in precipitation and temperature under future climate scenarios. • ~25 (maize) & 32% (alfalfa) of the observed crop LAI was involved in photosynthesis. • Extinction coefficient for beam radiation was 1.08 (maize) and 0.84 (alfalfa). • Canopy stomatal conductance, SC , was ~0.13 (maize) and ~0.15 (alfalfa). • Effective LAI and canopy SC can be evaluated by Eddy Covariance records.

DOI bib
Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests
M. Altaf Arain, Bing Xu, Jason Brodeur, Myroslava Khomik, Matthias Peichl, Eric Beamesderfer, Natalia Restrepo-Couple, Robin Thorne
Ecological Processes, Volume 11, Issue 1

Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019.Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m-2 yr-1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks.Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.

2021

DOI bib
Assessment of Different Water Use Efficiency Calculations for Dominant Forage Crops in the Great Lakes Basin
Kevin De Haan, Myroslava Khomik, Adam Green, Warren Helgason, Merrin L. Macrae, Mazda Kompani-Zare, Richard M. Petrone
Agriculture, Volume 11, Issue 8

Water use efficiency (WUE) can be calculated using a range of methods differing in carbon uptake and water use variable selection. Consequently, inconsistencies arise between WUE calculations due to complex physical and physiological interactions. The purpose of this study was to quantify and compare WUE estimates (harvest or flux-based) for alfalfa (C3 plant) and maize (C4 plant) and determine effects of input variables, plant physiology and farming practices on estimates. Four WUE calculations were investigated: two “harvest-based” methods, using above ground carbon content and either precipitation or evapotranspiration (ET), and two “flux-based” methods, using gross primary productivity (GPP) and either ET or transpiration. WUE estimates differed based on method used at both half-hourly and seasonal scales. Input variables used in calculations affected WUE estimates, and plant physiology led to different responses in carbon assimilation and water use variables. WUE estimates were also impacted by different plant physiological responses and processing methods, even when the same carbon assimilation and water use variables were considered. This study highlights a need to develop a metric of measuring cropland carbon-water coupling that accounts for all water use components, plant carbon responses, and biomass production.

DOI bib
Explaining the Shortcomings of Log‐Transforming the Dependent Variable in Regression Models and Recommending a Better Alternative: Evidence From Soil CO <sub>2</sub> Emission Studies
Kao‐Lee Liaw, Myroslava Khomik, M. Altaf Arain
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5

Log-transforming the dependent variable of a regression model, though convenient and frequently used, is accompanied by an under-prediction problem. We found that this underprediction can reach up to 20%, which is significant in studies that aim to estimate annual budgets. The fundamental reason for this problem is simply that the log-function is concave, and it has nothing to do with whether the dependent variable has a log-normal distribution or not. Using field-observed data of soil CO2 emission, soil temperature and soil moisture in a saturated-specification of a regression model for predicting emissions, we revealed that the under-predictions of the log-transformed approach were pervasive and systematically biased. The key determinant of the problem's severity was the coefficient of variation in the dependent variable that differed among different combinations of the values of the explanatory factors. By applying a parsimonious (Gaussian-Gamma) specification of the regression model to data from four different ecosystems, we found that this under-prediction problem was serious to various extents, and that for a relatively weak explanatory factor, the log-transformed approach is prone to yield a physically nonsensical estimated coefficient. Finally, we showed and concluded that the problem can be avoided by switching to the nonlinear approach, which does not require the assumption of homoscedasticity for the error term in computing the standard errors of the estimated coefficients.

DOI bib
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Lucas-Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 8, Issue 1

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.

DOI bib
The Impact of Variable Horizon Shade on the Growing Season Energy Budget of a Subalpine Headwater Wetland
Dylan M. Hrach, Richard M. Petrone, Brandon Van Huizen, Adam Green, Myroslava Khomik
Atmosphere, Volume 12, Issue 11

Surface energy budgets are important to the ecohydrology of complex terrain, where land surfaces cycle in and out of shadows creating distinct microclimates. Shading in such environments can help regulate downstream flow over the course of a growing season, but our knowledge on how shadows impact the energy budget and consequently ecohydrology in montane ecosystems is very limited. We investigated the influence of horizon shade on the surface energy fluxes of a subalpine headwater wetland in the Canadian Rocky Mountains during the growing season. During the study, surface insolation decreased by 60% (32% due to evolving horizon shade and 28% from seasonality). The influence of shade on the energy budget varied between two distinct periods: (1) Stable Shade, when horizon shade was constant and reduced sunlight by 2 h per day; and (2) Dynamic Shade, when shade increased and reduced sunlight by 0.18 h more each day, equivalent to a 13% reduction in incoming shortwave radiation and 16% in net radiation. Latent heat flux, the dominant energy flux at our site, varied temporally because of changes in incoming radiation, atmospheric demand, soil moisture and shade. Horizon shade controlled soil moisture at our site by prolonging snowmelt and reducing evapotranspiration in the late growing season, resulting in increased water storage capacity compared to other mountain wetlands. With the mounting risk of climate-change-driven severe spring flooding and late season droughts downstream of mountain headwaters, shaded subalpine wetlands provide important ecohydrological and mitigation services that are worthy of further study and mapping. This will help us better understand and protect mountain and prairie water resources.

2020

DOI bib
The Impact of Seasonal and Annual Climate Variations on the Carbon Uptake Capacity of a Deciduous Forest Within the Great Lakes Region of Canada
Eric Beamesderfer, M. Altaf Arain, Myroslava Khomik, Jason Brodeur
Journal of Geophysical Research: Biogeosciences, Volume 125, Issue 9

In eastern North America, many deciduous forest ecosystems grow at the northernmost extent of their geographical ranges, where climate change could aid or impede their growth. This region experiences frequent extreme weather conditions, allowing us to study the response of these forests to environmental conditions, reflective of future climates. Here we determined the impact of seasonal and annual climate variations and extreme weather events on the carbon (C) uptake capacity of an oak-dominated forest in southern Ontario, Canada, from 2012 to 2016. We found that changes in meteorology during late May to mid-July were key in determining the C sink strength of the forest, impacting the seasonal and annual variability of net ecosystem productivity (NEP). Overall, higher temperatures and dry conditions reduced ecosystem respiration (RE) much more than gross ecosystem productivity (GEP), leading to higher NEP. Variability in NEP was primarily driven by changes in RE, rather than GEP. The mean annual GEP, RE, and NEP values at our site during the study were 1,343 ± 85, 1,171 ± 139, and 206 ± 92 g C m-2 yr-1, respectively. The forest was a C sink even in years that experienced heat and water stresses. Mean annual NEP at our site was within the range of NEP (69-459 g C m-2 yr-1) observed in similar North American forests from 2012 to 2016. The growth and C sequestration capabilities of our oak-dominated forest were not adversely impacted by changes in environmental conditions and extreme weather events experienced over the study period.

DOI bib
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Maria Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 7, Issue 1

Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

DOI bib
Response of Soil CO2 Efflux to Shelterwood Harvesting in a Mature Temperate Pine Forest
Robin Thorne, Myroslava Khomik, Emily Hayman, M. Altaf Arain
Forests, Volume 11, Issue 3

In forest ecosystems, soil CO2 efflux is an important component of ecosystem respiration (RE), which is generally driven by variability in soil temperature and soil moisture. Tree harvesting in forests can alter the soil variables and, consequently, impact soil CO2 efflux. This study investigated the response of total soil CO2 efflux, and its components, to a shelterwood harvesting event of a mature temperate white pine (Pinus strobus L.) forest located in Southern Ontario, Canada. The objective was to explore the response of soil CO2 effluxes to changes in the forest microclimate, such as soil temperature and soil moisture, after shelterwood harvesting removed approximately one-third of the overstory canopy. No significant differences were found in both soil temperature and soil moisture between the pre-harvesting (2008–2011) and post-harvesting (2012–2014) periods. Despite similar soil microclimates, total soil CO2 effluxes were significantly reduced by up to 37%. Soil CO2 effluxes from heterotrophic sources were significantly reduced post-harvesting by approximately 27%, while no significant difference in the mineral-soil horizon sources were measured. An analysis of RE, measured with an eddy covariance tower over the study area, showed an increase post-harvesting. However, the overall net ecosystem carbon exchange showed no significant difference between pre- and post-harvesting. This was due to an increase in the gross ecosystem productivity post-harvesting, compensating for the increased losses (i.e., increased RE). This study highlights the complexities of soil CO2 efflux after a disturbance, such as a harvest. The knowledge gained from this study adds to our understanding of how shelterwood harvesting may influence ecosystem carbon exchange and will be useful for forest managers focused on carbon sequestration and forest conservation.

DOI bib
Response of carbon and water fluxes to meteorological and phenological variability in two eastern North American forests of similar age but contrasting species composition – a multiyear comparison
Eric Beamesderfer, M. Altaf Arain, Myroslava Khomik, Jason Brodeur, Brandon M. Burns
Biogeosciences, Volume 17, Issue 13

Abstract. The annual carbon and water dynamics of two eastern North American temperate forests were compared over a 6-year period from 2012 to 2017. The geographic location, forest age, soil, and climate were similar between the two stands; however, stand composition varied in terms of tree leaf-retention and shape strategy: one stand was a deciduous broadleaf forest, while the other was an evergreen needleleaf forest. The 6-year mean annual net ecosystem productivity (NEP) of the coniferous forest was slightly higher and more variable (218±109 g C m−2 yr−1) compared to that of the deciduous forest NEP (200±83 g C m−2 yr−1). Similarly, the 6-year mean annual evapotranspiration (ET) of the coniferous forest was higher (442±33 mm yr−1) than that of the deciduous forest (388±34 mm yr−1), but with similar interannual variability. Summer meteorology greatly impacted the carbon and water fluxes in both stands; however, the degree of response varied among the two stands. In general, warm temperatures caused higher ecosystem respiration (RE), resulting in reduced annual NEP values – an impact that was more pronounced at the deciduous broadleaf forest compared to the evergreen needleleaf forest. However, during warm and dry years, the evergreen forest had largely reduced annual NEP values compared to the deciduous forest. Variability in annual ET at both forests was related most to the variability in annual air temperature (Ta), with the largest annual ET observed in the warmest years in the deciduous forest. Additionally, ET was sensitive to prolonged dry periods that reduced ET at both stands, although the reduction at the coniferous forest was relatively larger than that of the deciduous forest. If prolonged periods (weeks to months) of increased Ta and reduced precipitation are to be expected under future climates during summer months in the study region, our findings suggest that the deciduous broadleaf forest will likely remain an annual carbon sink, while the carbon sink–source status of the coniferous forest remains uncertain.

2018

DOI bib
Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth
Felix C.C. Chan, M. Altaf Arain, Myroslava Khomik, Jason Brodeur, Matthias Peichl, Natalia Restrepo‐Coupe, Robin Thorne, Eric Beamesderfer, Shawn McKenzie, Bing Xu, Holly Croft, M. R. Pejam, Janelle Trant, Michelle Kula, Rachel A. Skubel
Forest Ecology and Management, Volume 410

Abstract This study presents the energy, water, and carbon (C) flux dynamics of a young afforested temperate white pine (Pinus strobus L.) forest in southern Ontario, Canada during the initial fourteen years (2003–2016) of establishment. Energy fluxes, namely, net radiation (Rn), latent heat (LE), and sensible heat (H) flux increased over time, due to canopy development. Annual values of ground heat flux (G) peaked in 2007 and then gradually declined in response to canopy closure. The forest became a consistent C-sink only 5 years after establishment owing in part to low respiratory fluxes from the former agricultural, sandy soils with low residual soil organic matter. Mean annual values of gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) ranged from 494 to 1913, 515 to 1774 and −126 to 216 g C m−2 year−1 respectively, over the study period. Annual evapotranspiration (ET) values ranged from 328 to 429 mm year−1 over the same period. Water use efficiency (WUE) increased with stand age with a mean WUE value of 3.92 g C kg−1 H2O from 2008 to 2016. Multivariable linear regression analysis conducted using observed data suggested that the overall, C and water dynamics of the stand were primarily driven by radiation and temperature, both of which explained 77%, 48%, 28%, and 76% of the variability in GEP, RE, NEP, and ET, respectively. However, late summer droughts, which were prevalent in the region, reduced NEP. The reduction in NEP was enhanced when summer drought events were accompanied by increased heat such as those in 2005, 2012 and 2016. This study contributes to our understanding of the energy, water and C dynamics of afforested temperate conifer plantations and how these forests may respond to changing climate conditions during the crucial initial stage of their life cycle. Our findings also demonstrate the potential of pine plantation stands to sequester atmospheric CO2 in eastern North America.
Search
Co-authors
Venues