2023
DOI
bib
abs
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Stefano Potter,
Sol Cooperdock,
Sander Veraverbeke,
Xanthe J. Walker,
Michelle C. Mack,
S. J. Goetz,
Jennifer L. Baltzer,
Laura Bourgeau‐Chavez,
Arden Burrell,
Catherine M. Dieleman,
Nancy H. F. French,
Stijn Hantson,
Elizabeth Hoy,
Liza K. Jenkins,
Jill F. Johnstone,
Evan S. Kane,
Susan M. Natali,
James T. Randerson,
M. R. Turetsky,
Ellen Whitman,
Elizabeth B. Wiggins,
Brendan M. Rogers
Biogeosciences, Volume 20, Issue 13
Abstract. Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m (meters) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned-area estimates. Using this new burned-area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1 standard deviation) of carbon (C) per year, with a mean combustion rate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion datasets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local- to continental-scale applications of boreal fire science.
2022
DOI
bib
abs
Burned Area and Carbon Emissions Across Northwestern Boreal North America from 2001–2019
Stefano Potter,
Sol Cooperdock,
Sander Veraverbeke,
Xanthe J. Walker,
Michelle C. Mack,
S. J. Goetz,
Jennifer L. Baltzer,
Laura Bourgeau‐Chavez,
Arden Burrell,
Catherine M. Dieleman,
Nancy H. F. French,
Stijn Hantson,
Elizabeth Hoy,
Liza K. Jenkins,
Jill F. Johnstone,
Evan S. Kane,
Susan M. Natali,
James T. Randerson,
M. R. Turetsky,
Ellen Whitman,
Elizabeth B. Wiggins,
Brendan M. Rogers
Abstract. Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned area detection algorithm between 2001–2019 across Alaska and Canada at 500 meters (m) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned area estimates. Using this new burned area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely-sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37 million hectares (Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 +/- 27.96 (+/- 1 standard deviation) Teragrams of carbon (C) per year, with a mean combustion rate of 3.13 +/- 1.17 kilograms C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger fire years and later season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion data sets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local to continental-scale applications of boreal fire science.
DOI
bib
abs
Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses
Adrianna Foster,
Jonathan Wang,
Gerald V. Frost,
Scott J. Davidson,
Elizabeth Hoy,
Kevin W. Turner,
Oliver Sonnentag,
Howard E. Epstein,
Logan T. Berner,
Amanda Armstrong,
Mary Kang,
Brendan M. Rogers,
Elizabeth M. Campbell,
Kimberley Miner,
Kathleen M. Orndahl,
Laura Bourgeau‐Chavez,
D. A. Lutz,
Nancy H. F. French,
Dong Chen,
Jinyang Du,
Tatiana A. Shestakova,
J. K. Shuman,
Ken D. Tape,
Anna‐Maria Virkkala,
Christopher Potter,
S. J. Goetz
Environmental Research Letters, Volume 17, Issue 11
Abstract Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.