2021
DOI
bib
abs
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat,
Magali F. Nehemy,
Alexandre Roy,
Troy S. Magney,
Nicholas C. Parazoo,
Colin P. Laroque,
Christoforos Pappas,
Oliver Sonnentag,
Katja Großmann,
D. R. Bowling,
Ulli Seibt,
Alexandra Ramirez,
Bruce Johnson,
Warren Helgason,
Alan Barr,
J. Stutz,
Zoe Pierrat,
Magali F. Nehemy,
Alexandre Roy,
Troy S. Magney,
Nicholas C. Parazoo,
Colin P. Laroque,
Christoforos Pappas,
Oliver Sonnentag,
Katja Großmann,
D. R. Bowling,
Ulli Seibt,
Alexandra Ramirez,
Bruce Johnson,
Warren Helgason,
Alan Barr,
J. Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5
The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.
DOI
bib
abs
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat,
Magali F. Nehemy,
Alexandre Roy,
Troy S. Magney,
Nicholas C. Parazoo,
Colin P. Laroque,
Christoforos Pappas,
Oliver Sonnentag,
Katja Großmann,
D. R. Bowling,
Ulli Seibt,
Alexandra Ramirez,
Bruce Johnson,
Warren Helgason,
Alan Barr,
J. Stutz,
Zoe Pierrat,
Magali F. Nehemy,
Alexandre Roy,
Troy S. Magney,
Nicholas C. Parazoo,
Colin P. Laroque,
Christoforos Pappas,
Oliver Sonnentag,
Katja Großmann,
D. R. Bowling,
Ulli Seibt,
Alexandra Ramirez,
Bruce Johnson,
Warren Helgason,
Alan Barr,
J. Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5
The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.
2019
DOI
bib
abs
Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region
Erqian Cui,
Kun Huang,
M. Altaf Arain,
Joshua B. Fisher,
D. N. Huntzinger,
Akihiko Ito,
Yiqi Luo,
Atul K. Jain,
Jiafu Mao,
A. M. Michalak,
Shuli Niu,
Nicholas C. Parazoo,
Changhui Peng,
Shushi Peng,
Benjamin Poulter,
D. M. Ricciuto,
Kevin Schaefer,
Christopher R. Schwalm,
Xiaoying Shi,
Hanqin Tian,
Weile Wang,
Jinsong Wang,
Yaxing Wei,
En‐Rong Yan,
Liming Yan,
Ning Zeng,
Qiuan Zhu,
Jianyang Xia
Global Biogeochemical Cycles, Volume 33, Issue 6
Global and regional projections of climate change by Earth system models are limited by their uncertain estimates of terrestrial ecosystem productivity. At the middle to low latitudes, the East Asian monsoon region has higher productivity than forests in Europe‐Africa and North America, but its estimate by current generation of terrestrial biosphere models (TBMs) has seldom been systematically evaluated. Here, we developed a traceability framework to evaluate the simulated gross primary productivity (GPP) by 15 TBMs in the East Asian monsoon region. The framework links GPP to net primary productivity, biomass, leaf area and back to GPP via incorporating multiple vegetation functional properties of carbon‐use efficiency (CUE), vegetation C turnover time (τveg), leaf C fraction (Fleaf), specific leaf area (SLA), and leaf area index (LAI)‐level photosynthesis (PLAI), respectively. We then applied a relative importance algorithm to attribute intermodel variation at each node. The results showed that large intermodel variation in GPP over 1901–2010 were mainly propagated from their different representation of vegetation functional properties. For example, SLA explained 77% of the intermodel difference in leaf area, which contributed 90% to the simulated GPP differences. In addition, the models simulated higher CUE (18.1 ± 21.3%), τveg (18.2 ± 26.9%), and SLA (27.4±36.5%) than observations, leading to the overestimation of simulated GPP across the East Asian monsoon region. These results suggest the large uncertainty of current TBMs in simulating GPP is largely propagated from their poor representation of the vegetation functional properties and call for a better understanding of the covariations between plant functional properties in terrestrial ecosystems.