2023
DOI
bib
abs
Arctic soil methane sink increases with drier conditions and higher ecosystem respiration
Carolina Voigt,
Anna-Maria Virkkala,
Gabriel Gosselin,
Kathryn A. Bennett,
T. Andrew Black,
Matteo Detto,
Charles Chevrier-Dion,
Georg Guggenberger,
Wasi Hashmi,
Leonie Kohl,
Dan Kou,
Charlotte Marquis,
Philip Marsh,
Maija E. Marushchak,
Zoran Nesic,
Hannu Nykänen,
Taija Saarela,
Leopold Sauheitl,
Branden Walker,
Niels Weiss,
Evan J. Wilcox,
Oliver Sonnentag
Nature Climate Change
Abstract Arctic wetlands are known methane (CH 4 ) emitters but recent studies suggest that the Arctic CH 4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH 4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH 4 occurred at all sites at rates of 0.092 ± 0.011 mgCH 4 m −2 h −1 (mean ± s.e.), CH 4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH 4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH 4 uptake by Arctic soils, providing a negative feedback to global climate change.
DOI
bib
abs
The Northwest Territories Thermokarst Mapping Collective: A northern-driven mapping collaborative toward understanding the effects of permafrost thaw
Steven V. Kokelj,
Tristan Gingras-Hill,
Seamus V Daly,
P D Morse,
S A Wolfe,
Ashley Rudy,
Jurjen van der Sluijs,
Niels Weiss,
H B O'Neill,
Jennifer L. Baltzer,
Trevor C. Lantz,
Carolyn Gibson,
Dieter Cazon,
Robert Fraser,
Duane G. Froese,
Garfield Giff,
Charles Klengenberg,
Scott F. Lamoureux,
William L. Quinton,
M. R. Turetsky,
Alexandre Chiasson,
C.C. Ferguson,
Michael Newton,
Mike Pope,
Jason Paul,
A E Wilson,
Joseph M. Young
Arctic Science
This paper documents the first comprehensive inventory of thermokarst and thaw-sensitive terrain indicators for a 2 million km2 region of northwestern Canada. This is accomplished through the Thermokarst Mapping Collective (TMC), a research collaborative to systematically inventory indicators of permafrost thaw sensitivity by mapping and aerial assessments across the Northwest Territories (NT), Canada. The increase in NT-based permafrost capacity has fostered science leadership and collaboration with government, academic, and community researchers to enable project implementation. Ongoing communications and outreach have informed study design and strengthened Indigenous and stakeholder relationships. Documentation of theme-based methods supported mapper training, and flexible data infrastructure facilitated progress by Canada-wide researchers throughout the COVID-19 pandemic. The TMC inventory of thermokarst and thaw-sensitive landforms agree well with fine-scale empirical mapping (69% to 84% accuracy) and aerial inventory (74% to 96% accuracy) datasets. National- and circumpolar-scale modelling of sensitive permafrost terrain contrasts significantly with TMC outputs, highlighting their limitations and the value of empirically-based mapping approaches. We demonstrate that the multi-parameter TMC outputs support a holistic understanding and refined depictions of permafrost terrain sensitivity, provide novel opportunities for syntheses, and inform future modelling approaches, which are urgently required to comprehend better what permafrost thaw means for Canada’s North.
2020
DOI
bib
abs
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry,
Jiří Bárta,
Daan Blok,
Bo Elberling,
Samuel Faucherre,
Gustaf Hugelius,
Christian Juncher Jørgensen,
Andreas Richter,
Hana Šantrůčková,
Niels Weiss
Biogeosciences, Volume 17, Issue 2
Abstract. The large stocks of soil organic carbon (SOC) in soils and deposits of the northern permafrost region are sensitive to global warming and permafrost thawing. The potential release of this carbon (C) as greenhouse gases to the atmosphere does not only depend on the total quantity of soil organic matter (SOM) affected by warming and thawing, but it also depends on its lability (i.e., the rate at which it will decay). In this study we develop a simple and robust classification scheme of SOM lability for the main types of soils and deposits in the northern permafrost region. The classification is based on widely available soil geochemical parameters and landscape unit classes, which makes it useful for upscaling to the entire northern permafrost region. We have analyzed the relationship between C content and C-CO2 production rates of soil samples in two different types of laboratory incubation experiments. In one experiment, ca. 240 soil samples from four study areas were incubated using the same protocol (at 5 ∘C, aerobically) over a period of 1 year. Here we present C release rates measured on day 343 of incubation. These long-term results are compared to those obtained from short-term incubations of ca. 1000 samples (at 12 ∘C, aerobically) from an additional three study areas. In these experiments, C-CO2 production rates were measured over the first 4 d of incubation. We have focused our analyses on the relationship between C-CO2 production per gram dry weight per day (µgC-CO2 gdw−1 d−1) and C content (%C of dry weight) in the samples, but we show that relationships are consistent when using C ∕ N ratios or different production units such as µgC per gram soil C per day (µgC-CO2 gC−1 d−1) or per cm3 of soil per day (µgC-CO2 cm−3 d−1). C content of the samples is positively correlated to C-CO2 production rates but explains less than 50 % of the observed variability when the full datasets are considered. A partitioning of the data into landscape units greatly reduces variance and provides consistent results between incubation experiments. These results indicate that relative SOM lability decreases in the order of Late Holocene eolian deposits to alluvial deposits and mineral soils (including peaty wetlands) to Pleistocene yedoma deposits to C-enriched pockets in cryoturbated soils to peat deposits. Thus, three of the most important SOC storage classes in the northern permafrost region (yedoma, cryoturbated soils and peatlands) show low relative SOM lability. Previous research has suggested that SOM in these pools is relatively undecomposed, and the reasons for the observed low rates of decomposition in our experiments need urgent attention if we want to better constrain the magnitude of the thawing permafrost carbon feedback on global warming.
2019
In this study we assess the total storage, landscape distribution, and vertical partitioning of soil organic carbon (SOC) stocks on the Brogger Peninsula, Svalbard. This type of high Arctic...