Patrick Jeffrey Deane
2022
Peat surface compression reduces smouldering fire potential as a novel fuel treatment for boreal peatlands
Patrick Jeffrey Deane,
SOPHIE WILKINSON,
Gregory J. Verkaik,
Paul Moore,
Dave Schroeder,
J. M. Waddington
Canadian Journal of Forest Research, Volume 52, Issue 3
The wildfire regime in Canada’s boreal region is changing; extended fire seasons are characterized by more frequent large fires (≥200 ha) burning greater areas of land, whilst climate-mediated drying is increasing the vulnerability of peatlands to deep burning. Proactive management strategies, such as fuel modification treatments, are necessary to reduce fire danger at the wildland-human interface (WHI). Novel approaches to fuel management are especially needed in peatlands where deep smouldering combustion is a challenge to suppression efforts and releases harmful emissions. Here, we integrate surface compression within conventional stand treatments to examine the potential for reducing smouldering of near-surface moss and peat. A linear model (adj. R2=0.62, p=2.2e-16) revealed that ground cover (F(2,101)=60.97, p<0.001) and compression (F(1,101)=56.46, p<0.001) had the greatest effects on smouldering potential, while stand treatment did not have a significant effect (F(3,101)=0.44, p=0.727). On average, compressed Sphagnum and feather moss plots showed 57.1% and 58.7% lower smouldering potential, respectively, when compared to uncompressed analogs. While practical evaluation is warranted to better understand the evolving effectiveness of this strategy, these findings demonstrate that a compression treatment can be successfully incorporated within both managed and unmanaged peatlands to reduce fire danger at the WHI.
2020
Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments
Patrick Jeffrey Deane,
SOPHIE WILKINSON,
Paul Moore,
J. M. Waddington
Fire, Volume 3, Issue 2
Across the Boreal, there is an expansive wildland–society interface (WSI), where communities, infrastructure, and industry border natural ecosystems, exposing them to the impacts of natural disturbances, such as wildfire. Treed peatlands have previously received little attention with regard to wildfire management; however, their role in fire spread, and the contribution of peat smouldering to dangerous air pollution, have recently been highlighted. To help develop effective wildfire management techniques in treed peatlands, we use seismic line disturbance as an analog for peatland fuel modification treatments. To delineate below-ground hydrocarbon resources using seismic waves, seismic lines are created by removing above-ground (canopy) fuels using heavy machinery, forming linear disturbances through some treed peatlands. We found significant differences in moisture content and peat bulk density with depth between seismic line and undisturbed plots, where smouldering combustion potential was lower in seismic lines. Sphagnum mosses dominated seismic lines and canopy fuel load was reduced for up to 55 years compared to undisturbed peatlands. Sphagnum mosses had significantly lower smouldering potential than feather mosses (that dominate mature, undisturbed peatlands) in a laboratory drying experiment, suggesting that fuel modification treatments following a strategy based on seismic line analogs would be effective at reducing smouldering potential at the WSI, especially under increasing fire weather.