Paul G. Menkveld


DOI bib
Quantifying seasonal, depression focused recharge in the context of public supply well vulnerability
Andrew J. Wiebe, Paul G. Menkveld, David L. Rudolph
Hydrological Processes, Volume 37, Issue 7

Abstract Depression focused recharge (DFR) may be a hydrologically important process that impacts the vulnerability of public supply wells, specifically related to pathogenic contaminants. The nature of DFR in glacial moraine environments, such as those located in northern latitudes within North America and Europe, is less well established than in other regions such as the Prairie Pothole Region (Northern United States, Western Canada) and the High Plains Aquifer (Central United States). The objectives of this study were to quantify seasonal infiltration flux beneath a topographically‐closed depression within 50 m of a public supply well and to interpret the impact of this DFR process on well vulnerability. Field instruments including groundwater monitoring wells, pressure transducers, soil moisture sensors and temperature sensors were installed in vertical clusters to capture the dynamics of infiltration, drainage and recharge within the depression feature. Continuous weather data were recorded by a meteorological station at the site. Transient infiltration was quantified during two contrasting hydrological events. The first event (~2 days) was an intense rainfall (>50 mm) on a melting snowpack during the fall season when the soils were unfrozen. The second was a longer (35 day) period during the spring freshet when the surficial soils were initially frozen and subject to diurnal freezing and thawing and occasional precipitation events. The water table fluctuation method augmented by Darcy flux contributions, in addition to numerical modelling using the HYDRUS‐1D model, were used to quantify recharge rates beneath the depression. Numerical DFR estimates and analytical results differed by ±8%. Results indicate that recharge rates on the order of the annual regional average can occur beneath localized features in response to extreme events associated with snowmelt and intense rainfall. Such events may represent a microbial threat to groundwater quality if public supply wells are located nearby.


DOI bib
Impacts of Event-Based Recharge on the Vulnerability of Public Supply Wells
Andrew J. Wiebe, David L. Rudolph, Ehsan Pasha, Jacqueline Marie Brook, Mike Christie, Paul G. Menkveld
Sustainability, Volume 13, Issue 14

Dynamic recharge events related to extreme rainfall or snowmelt are becoming more common due to climate change. The vulnerability of public supply wells to water quality degradation may temporarily increase during these types of events. The Walkerton, ON, Canada, tragedy (2000) highlighted the threat to human health associated with the rapid transport of microbial pathogens to public supply wells during dynamic recharge events. Field research at the Thornton (Woodstock, ON, Canada) and Mannheim West (Kitchener, ON, Canada) well fields, situated in glacial overburden aquifers, identified a potential increase in vulnerability due to event-based recharge phenomena. Ephemeral surface water flow and local ponding containing microbial pathogen indicator species were observed and monitored within the capture zones of public supply wells following heavy rain and/or snowmelt. Elevated recharge rates beneath these temporary surface water features were estimated to range between 40 and 710 mm over two-week periods using analytical and numerical modelling based on the water level, soil moisture, and temperature data. Modelling also suggested that such events could reduce contaminant travel times to a supply well, increasing vulnerability to water quality degradation. These studies suggest that event-based recharge processes occurring close to public supply wells may enhance the vulnerability of the wells to surface-sourced contaminants.