Peter Ashmore


2021

DOI bib
Stream power index for networks (SPIN) toolbox for decision support in urbanizing watersheds
Kimisha Ghunowa, Bruce Macvicar, Peter Ashmore
Environmental Modelling & Software, Volume 144

Urbanization typically leads to erosion and instability in rivers, and many management and restoration strategies have been developed to dampen the worst impacts. Stream power, defined as the rate of energy expenditure in a river, is a promising metric for analyzing cumulative effects. In this paper we describe a spatial decision support system called the Stream Power Index for Networks (SPIN) toolbox that can be used to assess urban river stability at a watershed scale. The objectives of the paper are to: a) describe the toolbox algorithms and procedures and b) demonstrate the utility of the approach. SPIN is written in Python and packaged as an ArcGIS toolbox. The toolbox combines existing landscape analysis algorithms with new algorithms to model river confluences, channel sinuosity, and threshold sediment particle sizes. Data can also be ingested from a standard hydraulic model. Two case studies demonstrate use of the toolbox to: i) anticipate current morphology; ii) predict urban morphologic change; and iii) analyze the benefits for stormwater management and channel restoration scenarios on channel stability.

DOI bib
Experiments on restoring alluvial cover using gravel augmentation in a variable width channel with irregular meanders
Sarah Peirce, Bruce Macvicar, Elli Papangelakis, Louis Vervynck, Peter Ashmore
Geomorphology, Volume 379

In partially-alluvial channels, an understanding of cover formation over a non-alluvial substrate is necessary for effective river management or restoration. Urban rivers, for example, are often sediment starved such that the underlying substrate may be exposed. Few experiments have investigated cover development in meandering channels, particularly where width and meander geometry are irregular as is often the case for partially alluvial channels. The purpose of this work is to support the development of sediment augmentation strategies to mitigate channel degradation and restore alluvial cover. The experiments also provide new insight into the impact of sediment supply rates on alluvial cover dynamics in variable-width channels. Under constant flow discharge and a continuous supply of sediment, sediment disperses downstream of the feed location and cover develops in a fragmented fashion. Cover initiation occurs downstream of bend apexes and develops as a series of discrete fixed bars whose morphology differs as a function of bend geometry and channel width. Cover expands and bars merge with time under steady sediment supply and discharge, eventually thickening to an equilibrium state in which sediment supply and output are approximately balanced. Higher sediment supply rates result in more extensive and thicker cover at equilibrium, including cover expanding into the cross-overs between the main bars. Coarse and fine fractions of the sediment supply are preferentially retained in the cover sediment because of fine particle deposition on bar tops and burial of initial coarse deposits. Models of areal cover with feed rate and cover thickness are proposed and compared with other studies. More experimentation is needed, but augmentation of alluvial gravel cover is a feasible approach to maintaining a sediment balance in partially-alluvial channels and for developing mobile alluvial cover in engineered channels.

2020

DOI bib
Experiments on restoring alluvial cover in straight and meandering rivers using gravel augmentation
Matilde Welber, Elli Papangelakis, Peter Ashmore, Bruce Macvicar
River Research and Applications, Volume 36, Issue 8

Successful management of natural and engineered channels with discontinuous alluvial cover requires knowledge of how the cover develops and evolves. We report on physical model experiments designed to compare alluvial cover dynamics in straight and sinuous fixed‐bed channels at a range of gravel‐bed material supply rates and constant discharge conditions. Experiments investigated the formation of alluvial cover from a bare bed, relationships between equilibrium cover characteristics and sediment supply rate, and the evolution of an initial uniform cover of varying thickness. A stable partially‐alluviated state is achieved in both the straight and sinuous channels for a range of sediment supply rates. The areal extent and stored mass of the cover increase progressively with supply rate, and the rate of increase is higher in the straight channel. While alluvial cover develops from isolated patches in the straight channel, cover in the sinuous channel develops as well‐defined bars, with deposition on the inside of bends and expanding outwards along the channel as cover area increases. Artificially emplaced cover quickly adjusts to a cover extent within 4–20% of that formed from a bare bed at the same feed rate, with initial cover thickness only influencing the final cover in the sinuous channel. Neither the sinuous nor the straight channel can sustain an alluvial cover in the absence of upstream sediment supply. This study can inform the management of semi‐alluvial channels because it highlights the primary roles of sediment supply and planform geometry in maintaining an alluvial cover in natural and engineered channels.

2019

DOI bib
Bedload Sediment Transport Regimes of Semi‐alluvial Rivers Conditioned by Urbanization and Stormwater Management
Elli Papangelakis, Bruce Macvicar, Peter Ashmore
Water Resources Research, Volume 55, Issue 12

Watershed urbanization and stormwater management (SWM) alter the hydrologic processes of rivers. Although differences have been documented in channel morphology and sediment yield pre‐ and posturbanization, little is known about how the modified hydrology affects grain‐scale bedload transport dynamics. This study aims to characterize the bedload sediment transport regime of three rivers with different hydrologic settings: rural, urban with no SWM, and urban with peak‐shaving SWM. The rivers are “semi‐alluvial,” characterized by an alluvial layer over a cohesive till. Bedload transport was monitored using tracer stones over 3 years. Hydrograph characteristics of the streams fit with what is expected in urban and SWM systems, and the rural stream has an episodic transport regime typical of gravel‐bed rivers. Entrainment thresholds are not detectably impacted by the semi‐alluvial bed cover, but travel lengths of grains relative to their size are longer than in alluvial gravel‐bed streams. Downstream displacement rates of particles up to the D90 are accelerated in the urban river due to more frequent mobilization rather than increased event‐based travel lengths and may explain channel enlargement. SWM decreases the mobility and travel lengths of particles below those in the rural system, which is combined with channel narrowing, and the loss of bed forms suggests a shift toward a competence‐limited transport regime. This new regime is a result of reduced shear stresses that are insufficient to transport coarse material. This study presents empirical evidence of the effects of watershed urbanization and SWM on bedload transport and provides recommendations for process‐based river management strategies.