Philippe Ciais


2021

DOI bib
Widespread decline in winds delayed autumn foliar senescence over high latitudes
Chaoyang Wu, Jian Wang, Philippe Ciais, Josep Peñuelas, Xiaoyang Zhang, Oliver Sonnentag, Feng Tian, Xiaoyue Wang, Huanjiong Wang, Ronggao Liu, Yongshuo H. Fu, Quansheng Ge, Chaoyang Wu, Jian Wang, Philippe Ciais, Josep Peñuelas, Xiaoyang Zhang, Oliver Sonnentag, Feng Tian, Xiaoyue Wang, Huanjiong Wang, Ronggao Liu, Yongshuo H. Fu, Quansheng Ge
Proceedings of the National Academy of Sciences, Volume 118, Issue 16

The high northern latitudes (>50°) experienced a pronounced surface stilling (i.e., decline in winds) with climate change. As a drying factor, the influences of changes in winds on the date of autumn foliar senescence (DFS) remain largely unknown and are potentially important as a mechanism explaining the interannual variability of autumn phenology. Using 183,448 phenological observations at 2,405 sites, long-term site-scale water vapor and carbon dioxide flux measurements, and 34 y of satellite greenness data, here we show that the decline in winds is significantly associated with extended DFS and could have a relative importance comparable with temperature and precipitation effects in contributing to the DFS trends. We further demonstrate that decline in winds reduces evapotranspiration, which results in less soil water losses and consequently more favorable growth conditions in late autumn. In addition, declining winds also lead to less leaf abscission damage which could delay leaf senescence and to a decreased cooling effect and therefore less frost damage. Our results are potentially useful for carbon flux modeling because an improved algorithm based on these findings projected overall widespread earlier DFS than currently expected by the end of this century, contributing potentially to a positive feedback to climate.

DOI bib
Widespread decline in winds delayed autumn foliar senescence over high latitudes
Chaoyang Wu, Jian Wang, Philippe Ciais, Josep Peñuelas, Xiaoyang Zhang, Oliver Sonnentag, Feng Tian, Xiaoyue Wang, Huanjiong Wang, Ronggao Liu, Yongshuo H. Fu, Quansheng Ge, Chaoyang Wu, Jian Wang, Philippe Ciais, Josep Peñuelas, Xiaoyang Zhang, Oliver Sonnentag, Feng Tian, Xiaoyue Wang, Huanjiong Wang, Ronggao Liu, Yongshuo H. Fu, Quansheng Ge
Proceedings of the National Academy of Sciences, Volume 118, Issue 16

The high northern latitudes (>50°) experienced a pronounced surface stilling (i.e., decline in winds) with climate change. As a drying factor, the influences of changes in winds on the date of autumn foliar senescence (DFS) remain largely unknown and are potentially important as a mechanism explaining the interannual variability of autumn phenology. Using 183,448 phenological observations at 2,405 sites, long-term site-scale water vapor and carbon dioxide flux measurements, and 34 y of satellite greenness data, here we show that the decline in winds is significantly associated with extended DFS and could have a relative importance comparable with temperature and precipitation effects in contributing to the DFS trends. We further demonstrate that decline in winds reduces evapotranspiration, which results in less soil water losses and consequently more favorable growth conditions in late autumn. In addition, declining winds also lead to less leaf abscission damage which could delay leaf senescence and to a decreased cooling effect and therefore less frost damage. Our results are potentially useful for carbon flux modeling because an improved algorithm based on these findings projected overall widespread earlier DFS than currently expected by the end of this century, contributing potentially to a positive feedback to climate.

2020

DOI bib
Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel S. Goll, Oliviér Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan H. Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, María José Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, Philippe Ciais
Geoscientific Model Development, Volume 13, Issue 11

Abstract. Aerosol- and cloud-induced changes in diffuse light have important impacts on the global land carbon cycle, as they alter light distribution and photosynthesis in vegetation canopies. However, this effect remains poorly represented or evaluated in current land surface models. Here, we add a light partitioning module and a new canopy light transmission module to the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) land surface model (trunk version, v5453) and use the revised model, ORCHIDEE_DF, to estimate the fraction of diffuse light and its effect on gross primary production (GPP) in a multilayer canopy. We evaluate the new parameterizations using flux observations from 159 eddy covariance sites over the globe. Our results show that, compared with the original model, ORCHIDEE_DF improves the GPP simulation under sunny conditions and captures the observed higher photosynthesis under cloudier conditions in most plant functional types (PFTs). Our results also indicate that the larger GPP under cloudy conditions compared with sunny conditions is mainly driven by increased diffuse light in the morning and in the afternoon as well as by a decreased vapor pressure deficit (VPD) and decreased air temperature at midday. The observations show that the strongest positive effects of diffuse light on photosynthesis are found in the range from 5 to 20 ∘C and at a VPD < 1 kPa. This effect is found to decrease when the VPD becomes too large or the temperature falls outside of the abovementioned range, which is likely due to the increasing stomatal resistance to leaf CO2 uptake. ORCHIDEE_DF underestimates the diffuse light effect at low temperature in all PFTs and overestimates this effect at high temperature and at a high VPD in grasslands and croplands. The new model has the potential to better investigate the impact of large-scale aerosol changes and long-term changes in cloudiness on the terrestrial carbon budget, both in the historical period and in the context of future air quality policies and/or climate engineering.

2019

DOI bib
Cryptic phenology in plants: Case studies, implications, and recommendations
Loren P. Albert, Natalia Restrepo‐Coupé, Marielle N. Smith, Jin Wu, Cecilia Chavana‐Bryant, Neill Prohaska, Tyeen Taylor, Giordane Martins, Philippe Ciais, Jiafu Mao, M. Altaf Arain, Wei Li, Xiaoying Shi, D. M. Ricciuto, Travis E. Huxman, Sean M. McMahon, S. R. Saleska
Global Change Biology, Volume 25, Issue 11

Plant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.

DOI bib
Global vegetation biomass production efficiency constrained by models and observations
Yue He, Shushi Peng, Yongwen Liu, Xiangyi Li, Kai Wang, Philippe Ciais, M. Altaf Arain, Yuanyuan Fang, Joshua B. Fisher, Daniel S. Goll, Daniel J. Hayes, D. N. Huntzinger, Akihiko Ito, Atul K. Jain, Ivan A. Janssens, Jiafu Mao, Matteo Campioli, A. M. Michalak, Changhui Peng, Josep Peñuelas, Benjamin Poulter, Dahe Qin, D. M. Ricciuto, Kevin Schaefer, Christopher R. Schwalm, Xiaoying Shi, Hanqin Tian, Sara Vicca, Yaxing Wei, Ning Zeng, Qiuan Zhu
Global Change Biology, Volume 26, Issue 3

Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon-nitrogen interactions tend to be more realistic. Using observation-based estimates of global photosynthesis, we quantify the global BP of non-cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model-estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).

DOI bib
Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization
Yongwen Liu, Shilong Piao, Thomas Gasser, Philippe Ciais, Hui Yang, Han Wang, Trevor F. Keenan, Mengtian Huang, Shiqiang Wan, Jian Song, Kai Wang, Ivan A. Janssens, Josep Peñuelas, Chris Huntingford, Xuhui Wang, M. Altaf Arain, Yuanyuan Fang, Joshua B. Fisher, Maoyi Huang, D. N. Huntzinger, Akihiko Ito, Atul K. Jain, Jiafu Mao, A. M. Michalak, Changhui Peng, Benjamin Poulter, Christopher R. Schwalm, Xiaoying Shi, Hanqin Tian, Yaxing Wei, Ning Zeng, Qiuan Zhu, Tao Wang
Nature Geoscience, Volume 12, Issue 10

Clarifying how increased atmospheric CO2 concentration (eCO2) contributes to accelerated land carbon sequestration remains important since this process is the largest negative feedback in the coupled carbon–climate system. Here, we constrain the sensitivity of the terrestrial carbon sink to eCO2 over the temperate Northern Hemisphere for the past five decades, using 12 terrestrial ecosystem models and data from seven CO2 enrichment experiments. This constraint uses the heuristic finding that the northern temperate carbon sink sensitivity to eCO2 is linearly related to the site-scale sensitivity across the models. The emerging data-constrained eCO2 sensitivity is 0.64 ± 0.28 PgC yr−1 per hundred ppm of eCO2. Extrapolating worldwide, this northern temperate sensitivity projects the global terrestrial carbon sink to increase by 3.5 ± 1.9 PgC yr−1 for an increase in CO2 of 100 ppm. This value suggests that CO2 fertilization alone explains most of the observed increase in global land carbon sink since the 1960s. More CO2 enrichment experiments, particularly in boreal, arctic and tropical ecosystems, are required to explain further the responsible processes. The northern temperate carbon sink is estimated to increase by 0.64 PgC each year for each increase in atmospheric CO2 concentrations by 100 ppm, suggests an analysis of data from field experiments at 7 sites constraints.

2018

DOI bib
Missing pieces to modeling the Arctic-Boreal puzzle
Joshua B. Fisher, Daniel J. Hayes, Christopher R. Schwalm, D. N. Huntzinger, Eric Stofferahn, Kevin Schaefer, Yiqi Luo, Stan D. Wullschleger, S. J. Goetz, Charles E. Miller, P. C. Griffith, Sarah Chadburn, Abhishek Chatterjee, Philippe Ciais, Thomas A. Douglas, Hélène Genet, Akihiko Ito, C. S. R. Neigh, Benjamin Poulter, Brendan M. Rogers, Oliver Sonnentag, Hanqin Tian, Weile Wang, Yongkang Xue, Zong‐Liang Yang, Ning Zeng, Zhen Zhang
Environmental Research Letters, Volume 13, Issue 2

Author(s): Fisher, JB; Hayes, DJ; Schwalm, CR; Huntzinger, DN; Stofferahn, E; Schaefer, K; Luo, Y; Wullschleger, SD; Goetz, S; Miller, CE; Griffith, P; Chadburn, S; Chatterjee, A; Ciais, P; Douglas, TA; Genet, H; Ito, A; Neigh, CSR; Poulter, B; Rogers, BM; Sonnentag, O; Tian, H; Wang, W; Xue, Y; Yang, ZL; Zeng, N; Zhang, Z | Abstract: NASA has launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE). While the initial phases focus on field and airborne data collection, early integration with modeling activities is important to benefit future modeling syntheses. We compiled feedback from ecosystem modeling teams on key data needs, which encompass carbon biogeochemistry, vegetation, permafrost, hydrology, and disturbance dynamics. A suite of variables was identified as part of this activity with a critical requirement that they are collected concurrently and representatively over space and time. Individual projects in ABoVE may not capture all these needs, and thus there is both demand and opportunity for the augmentation of field observations, and synthesis of the observations that are collected, to ensure that science questions and integrated modeling activities are successfully implemented.
Search
Co-authors
Venues