Phillip Ankley


2024

DOI bib
A preliminary investigation of microbial communities on the Athabasca Glacier within deposited organic matter
Milena Esser, Phillip Ankley, Caroline Aubry‐Wake, Yuwei Xie, Helen M. Baulch, Cameron Hoggarth, Markus Hecker, Henner Hollert, John P. Giesy, John W. Pomeroy, Markus Brinkmann
Environmental Science: Advances, Volume 3, Issue 3

Glacier ecosystems are shrinking at an accelerating rate due to changes in climate, and increased darkening from allochthonous and autochthonous carbon is leading to changes in light absorption, associated heat, and microbial communities.

2022

DOI bib
RNA metabarcoding helps reveal zooplankton community response to environmental stressors
Phillip Ankley, Yuwei Xie, Sonya M. Havens, Lisa Peters, Lauren Timlick, José Luis Rodríguez‐Gil, John P. Giesy, Vince Palace
Environmental Pollution, Volume 292

DNA metabarcoding can provide a high-throughput and rapid method for characterizing responses of communities to environmental stressors. However, within bulk samples, DNA metabarcoding hardly distinguishes live from the dead organisms. Here, both DNA and RNA metabarcoding were applied and compared in experimental freshwater mesocosms conducted for assessment of ecotoxicological responses of zooplankton communities to remediation treatment until 38 days post oil-spill. Furthermore, a novel indicator of normalized vitality (NV), sequence counts of RNA metabarcoding normalized by that of DNA metabarcoding, was developed for assessment of ecological responses. DNA and RNA metabarcoding detected similar taxa richness and rank of relative abundances. Both DNA and RNA metabarcoding demonstrated slight shifts in measured α-diversities in response to treatments. NV presented relatively greater magnitudes of differential responses of community compositions to treatments compared to DNA or RNA metabarcoding. NV declined from the start of the experiment (3 days pre-spill) to the end (38 days post-spill). NV also differed between Rotifer and Arthropoda, possibly due to differential life histories and sizes of organisms. NV could be a useful indicator for characterizing ecological responses to anthropogenic influence; however, the biology of target organisms and subsequent RNA production need to be considered. • RNA normalized by DNA metabarcoding functions as normalized vitality. • Normalized vitality reflected temporal dynamics of zooplankton communities. • Normalized vitality revealed greater community differences between treatments. • Rotifer had greatest normalized vitality compared to Arthropoda.

DOI bib
Effects of aqueous fluoxetine exposure on gut microbiome of adult Pimephales promelas
Alana Weber, Yuwei Xie, Jonathan K. Challis, Abigail DeBofsky, Phillip Ankley, Markus Hecker, Paul D. Jones, John P. Giesy
Science of The Total Environment, Volume 813

The microbiome of the gut is vital for homeostasis of hosts with its ability to detoxify and activate toxicants, as well as signal to the immune and nervous systems. However, in the field of environmental toxicology, the gut microbiome has only recently been identified as a measurable indicator for exposure to environmental pollutants. Antidepressants found in effluents of wastewater treatment plants and surface waters have been shown to exhibit antibacterial-like properties in vitro, where some bacteria are known to express homologous proteins that bind antidepressants in vertebrates. Therefore, it has been hypothesized that exposure to antidepressant drugs might affect gut microbiota of aquatic organisms. In this study, the common antidepressant, fluoxetine, was investigated to determine whether it can modulate the gut microbiome of adult fathead minnows. A 28-day, sub-chronic, static renewal exposure was performed with nominal fluoxetine concentrations of 0.01, 10 or 100 μg/L. Using 16S rRNA amplicon sequencing, shifts among the gut-associated microbiota were observed in individuals exposed to the greatest concentration, with greater effects observed in females. These changes were associated with a decrease in relative proportions of commensal bacteria, which can be important for health of fish including bacteria essential for fatty acid oxidation, and an increase in relative proportions of pathogenic bacteria associated with inflammation. Results demonstrate, for the first time, how antidepressants found in some aquatic environments can influence gut microbiota of fishes.

DOI bib
16S rRNA metabarcoding unearths responses of rare gut microbiome of fathead minnows exposed to benzo[a]pyrene
Abigail DeBofsky, Yuwei Xie, Jonathan K. Challis, Phillip Ankley, Markus Brinkmann, Paul D. Jones, John P. Giesy
Science of The Total Environment, Volume 807

Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes of juvenile fathead minnows (Pimephales promelas) were investigated. Fish were exposed for two weeks, to concentrations of 0, 1, 10, 100, or 1000 μg BaP g-1 in the diet. The active gut microbiome was characterized using 16S rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes resulting from exposure to contaminants.

DOI bib
Effects of in situ experimental selenium exposure on finescale dace (Phoxinus neogaeus) gut microbiome
Phillip Ankley, Stephanie D. Graves, Yuwei Xie, Abigail DeBofsky, Alana Weber, Markus Brinkmann, Vince Palace, Karsten Liber, Markus Hecker, David M. Janz, John P. Giesy
Environmental Research, Volume 212

Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 μg Se/L, relative to that of fish exposed to the greater concentration of 5.6 μg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.

2021

DOI bib
Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake
Phillip Ankley, Yuwei Xie, Tyler A. Black, Abigail DeBofsky, McKenzie Perry, Michael J. Paterson, Mark L. Hanson, Scott N. Higgins, John P. Giesy, Vince Palace, Phillip Ankley, Yuwei Xie, Tyler A. Black, Abigail DeBofsky, McKenzie Perry, Michael J. Paterson, Mark L. Hanson, Scott N. Higgins, John P. Giesy, Vince Palace
Aquatic Toxicology, Volume 236

Abstract Regulators require adequate information to select best practices with less ecosystem impacts for remediation of freshwater ecosystems after oil spills. Zooplankton are valuable indicators of aquatic ecosystem health as they play pivotal roles in biochemical cycles while stabilizing food webs. Compared with morphological identification, metabarcoding holds promise for cost-effective, high-throughput, and benchmarkable biomonitoring of zooplankton communities. The objective of this study was to apply DNA and RNA metabarcoding of zooplankton for ecotoxicological assessment and compare it with traditional morphological identification in experimental shoreline enclosures in a boreal lake. These identification methods were also applied in context of assessing response of the zooplankton community exposed to simulated spills of diluted bitumen (dilbit), with experimental remediation practices (enhanced monitored natural recovery and shoreline cleaner application). Metabarcoding detected boreal zooplankton taxa up to the genus level, with a total of 24 shared genera, and while metabarcoding-based relative abundance served as an acceptable proxy for biomass inferred by morphological identification (ρ ≥ 0.52). Morphological identification determined zooplankton community composition changes due to treatments at 11 days post-spill (PERMANOVA, p = 0.0143) while metabarcoding methods indicated changes in zooplankton richness and communities at 38 days post-spill (T-test, p

DOI bib
Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake
Phillip Ankley, Yuwei Xie, Tyler A. Black, Abigail DeBofsky, McKenzie Perry, Michael J. Paterson, Mark L. Hanson, Scott N. Higgins, John P. Giesy, Vince Palace, Phillip Ankley, Yuwei Xie, Tyler A. Black, Abigail DeBofsky, McKenzie Perry, Michael J. Paterson, Mark L. Hanson, Scott N. Higgins, John P. Giesy, Vince Palace
Aquatic Toxicology, Volume 236

Abstract Regulators require adequate information to select best practices with less ecosystem impacts for remediation of freshwater ecosystems after oil spills. Zooplankton are valuable indicators of aquatic ecosystem health as they play pivotal roles in biochemical cycles while stabilizing food webs. Compared with morphological identification, metabarcoding holds promise for cost-effective, high-throughput, and benchmarkable biomonitoring of zooplankton communities. The objective of this study was to apply DNA and RNA metabarcoding of zooplankton for ecotoxicological assessment and compare it with traditional morphological identification in experimental shoreline enclosures in a boreal lake. These identification methods were also applied in context of assessing response of the zooplankton community exposed to simulated spills of diluted bitumen (dilbit), with experimental remediation practices (enhanced monitored natural recovery and shoreline cleaner application). Metabarcoding detected boreal zooplankton taxa up to the genus level, with a total of 24 shared genera, and while metabarcoding-based relative abundance served as an acceptable proxy for biomass inferred by morphological identification (ρ ≥ 0.52). Morphological identification determined zooplankton community composition changes due to treatments at 11 days post-spill (PERMANOVA, p = 0.0143) while metabarcoding methods indicated changes in zooplankton richness and communities at 38 days post-spill (T-test, p