Piyush Jain
2019
Evaluation of Gridded Precipitation Data and Interpolation Methods for Forest Fire Danger Rating in Alberta, Canada
Xinli Cai,
Xianli Wang,
Piyush Jain,
Mike Flannigan
Journal of Geophysical Research: Atmospheres, Volume 124, Issue 1
The Canadian Forest Fire Weather Index System is the primary measurement of wildfire danger in Canada. Interpolating daily precipitation, one of the inputs for the Fire Weather Index System is a key challenge in areas without sufficient weather stations. This work evaluates the performance of gridded precipitation from the Canadian Precipitation Analysis (CaPA) System and six interpolation methods to achieve the best fire danger rating in Alberta, Canada. Results show that the CaPA System has only average performance due to limited radar coverage (10%) in the forested region; however, using the CaPA System as a covariate with regression kriging generates significantly better precipitation estimates. Ordinary kriging, regression kriging with elevation as a covariate, and the thin‐plate smoothed spline are methods with similar performance. Fuel moisture codes of the Fire Weather Index System respond differently to precipitation amounts due to differences in their time constants for drying. Fine fuels with a short drying time (Fine Fuel Moisture Code) are best estimated by the CaPA System because of its enhanced skill in estimating small precipitation events. Compacted organic fuels with longer drying times (Duff Moisture Code and Drought Code) are best estimated by regression kriging with CaPA because it better predicts significant precipitation events. The dense fire weather station network in our study area (~3.0 stations/10,000 km2) allows us to perform a sensitivity analysis, and we find that a threshold of >0.5 stations/10,000 km2 is needed for regression kriging with CaPA to become appreciably better than the CaPA System.
Scientists’ warning on wildfire — a Canadian perspective
Sean C. P. Coogan,
François Robinne,
Piyush Jain,
Mike D. Flannigan
Canadian Journal of Forest Research, Volume 49, Issue 9
Recently, the World Scientists’ Warning to Humanity: a Second Notice was issued in response to ongoing and largely unabated environmental degradation due to anthropogenic activities. In the warning, humanity is urged to practice more environmentally sustainable alternatives to business as usual to avoid potentially catastrophic outcomes. Following the success of their warning, the Alliance of World Scientists called for discipline-specific follow-up papers. This paper is an answer to that call for the topic of wildland fire. Across much of Canada and the world, wildfires are anticipated to increase in severity and frequency in response to anthropogenic activities. The world scientists’ second warning provides the opportunity for wildland fire researchers to raise the profile of the potential impacts that anthropogenic activities are likely to have on future fire regimes and, in return, what impacts future fire regimes may have on humanity. We discuss how wildfire is related to several issues of concern raised in the world scientists’ second warning, including climate change, human population growth, biodiversity and forests, and freshwater availability. Furthermore, we touch on the potential future health impacts and challenges to wildfire suppression and management in Canada. In essence, our wildfire scientists’ warning to humanity is that we, as a society, will have to learn to live with more fire on the landscape. We provide some recommendations on how we might move forward to prepare for and adapt to future wildfire regimes in Canada. Although this paper is primarily Canadian in focus, the concepts and information herein also draw from international examples and are of relevance globally.
Fire-regime changes in Canada over the last half century
Chelene C. Hanes,
Xianli Wang,
Piyush Jain,
Marc‐André Parisien,
John M. Little,
Mike Flannigan
Canadian Journal of Forest Research, Volume 49, Issue 3
Contemporary fire regimes of Canadian forests have been well documented based on forest fire records between the late 1950s to 1990s. Due to known limitations of fire datasets, an analysis of changes in fire-regime characteristics could not be easily undertaken. This paper presents fire-regime trends nationally and within two zonation systems, the homogeneous fire-regime zones and ecozones, for two time periods, 1959–2015 and 1980–2015. Nationally, trends in both area burned and number of large fires (≥200 ha) have increased significantly since 1959, which might be due to increases in lightning-caused fires. Human-caused fires, in contrast, have shown a decline. Results suggest that large fires have been getting larger over the last 57 years and that the fire season has been starting approximately one week earlier and ending one week later. At the regional level, trends in fire regimes are variable across the country, with fewer significant trends. Area burned, number of large fires, and lightning-caused fires are increasing in most of western Canada, whereas human-caused fires are either stable or declining throughout the country. Overall, Canadian forests appear to have been engaged in a trajectory towards more active fire regimes over the last half century.
Search
Co-authors
- Xianli Wang 2
- Mike Flannigan 2
- Xinli Cai 1
- Sean C. P. Coogan 1
- François Robinne 1
- show all...
Venues
- GWF3